Navigation Links
UA engineering professor uses aerospace materials to build endless pipeline
Date:8/17/2012

TUCSON, Ariz. (August 17, 2012) -- Mo Ehsani, Professor Emeritus of Civil Engineering at the University of Arizona, has designed a new, lightweight underground pipe he says could transform the pipeline construction industry.

Instead of conventional concrete or steel, Ehsani's new pipe consists of a central layer of lightweight plastic honeycomb, similar to that used in the aerospace industry, sandwiched between layers of resin-saturated carbon fiber fabric.

In combination, these materials are as strong, or stronger, than conventional steel and concrete pipes, which are time-consuming and expensive to manufacture and transport.

Concrete and steel pipes are built in short sections to fit on standard 18-wheel trucks, but Ehsani's new pipe can be built onsite as a single section of virtually infinite length, hence the product name InfinitPipe.

The heavy industrial manufacturing processes, long-distance trucking, and leak-prone joints used in steel and concrete pipe construction exact a heavy toll on the environment, not to mention bottom line, which is why Ehsani's company, QuakeWrap, is marketing InfinitPipe as the world's first "green" pipe.

"There are really two aspects to this invention," Ehsani said. "One is this new type of lightweight honeycomb pipe. Second is our ability to give clients an endless or infinite pipe, without a joint. That is a big, big breakthrough in the pipeline industry that has implications for natural gas, oil, water, and sewer pipes."

A literally infinite pipe is, of course, not feasible, but Ehsani's method of manufacturing could create extremely long sections of joint-free pipe. "We could make a section a mile long," he said. "Of course, every thousand feet or so, you'd need an expansion joint so the pipe can breathe, but this would certainly not be the same concern we have today, where we have to put a joint every 20 feet."

The secret of producing virtually endless pipe sections lies in the manufacturing methodology. Ehsani wraps the various layers of carbon fabric and honeycomb around a mandrel, a kind of tubular mold with a cross-sectional shape that matches the pipe's internal cross-section, which is typically, but not always, circular.

"We basically start with a tube and wrap the materials on the outside," Ehsani said. "A couple of layers of carbon fabric, then we put on the honeycomb and then a couple of layers of carbon or glass fiber on the outside. This becomes the pipe."

After testing this manufacturing method, Ehsani had a "eureka" moment when he realized that the finished pipe could be partially slid off the mandrel, and more pipe could be added to the section of pipe remaining on the mandrel. "I thought, why don't we just slip this off of the mandrel and continue making this pipe?" Ehsani said. "Never stop."

Carbon fiber, resin and aerospace honeycomb are all very light materials that can be transported at a fraction of the cost of conventional prefabricated steel and concrete pipe, and Ehsani said he is looking for partners to develop an automated mobile unit to make the pipes onsite.

"Imagine having a truck with a mandrel in the back," Ehsani said. "You start making the pipe on, say, a 20-foot mandrel, and pull off 18 feet so you have two feet left on the mandrel," he said. "Then you just move the truck forward and drop the pipe in the ground, and keep adding pipe."

As if virtually eliminating transportation costs, slashing manufacturing costs, and reducing environmental impact weren't enough, Ehsani sees this pipe technology creating jobs and boosting local economies.

"Suppose you have a pipeline project in a developing nation," Ehsani said. "You could ship the raw materials to the workers there and they could make this pipe in their own village. No matter what size or shape they want, all they need to do is build a mandrel and make the pipe on the spot. We would be making it with local people under our supervision."

Closer to home, Ehsani cites the recently awarded $10.7 million contract to build the first four miles of pipe for the billion dollar Navajo-Gallup water supply project, which involves building a 280-mile pipeline to supply water to more than 40 Navajo communities in New Mexico and Arizona.

"The contractor is making a 42-inch diameter pipe for four miles, which works out to $507 a foot," Ehsani said. "Really, we could have that pipe built faster with the help of local labor and put it in place sooner, without having to wait to order it and ship it, and all of that expense."

Ehsani said he didn't really set out to turn pipeline construction on its head, but the project took on a life of its own. "We developed this originally with the intention of fixing existing pipes," he said. "Then as we started getting into this thing I realized it could be a real game-changing breakthrough technology."

The breakthrough did not happen overnight. In the late 1980s, Ehsani and Hamid Saadatmanesh, both of the UA department of civil engineering and engineering mechanics, pioneered research into repairing and retrofitting bridges and buildings using fiber-reinforced polymers, so the technology is well established.

"There's a lot of history on these materials," Ehsani said, which has enabled him to refine the pipe manufacturing process to use smaller amounts of better quality materials. "Because we're using our materials in a smart manner, we can afford to use the higher end material," Ehsani said. "So instead of cheaper glass fabric, we use carbon. Instead of polyester resin, we use epoxy. Because we don't have a solid core, we can afford to put the expensive material on the skin."

If Ehsani's concept for mobile pipe manufacture using lightweight components takes off, he envisions an industry freed from the shackles of heavy industrial plant. "As a business model, a company that wants to get into pipeline manufacturing with one of these mobile trucks could have a factory anywhere in the world," he said. "You could be doing a job in Hawaii today and next week be working in Panama. You're no longer limited by where your factory is."


'/>"/>

Contact: Pete Brown
pnb@email.arizona.edu
520-621-3754
University of Arizona College of Engineering
Source:Eurekalert  

Related biology news :

1. Columbia Engineering and Penn researchers increase speed of single-molecule measurements
2. Melting glaciers, enough sand to bury London, and ancient ecosystem engineering
3. Innovative cell printing technologies hold promise for tissue engineering R&D
4. 5th Annual Advances in Biomolecular Engineering Symposium
5. Medical device, health professionals attend first national conference on value-driven engineering
6. NSF report detailing growth in graduate enrollment in science & engineering in the past decade
7. Investigation of American Oriental Bioengineering, Inc. by Securities Lawyers at Goldfarb LLP Law Firm for Potential Shareholder Claim
8. Oligonucleotide Delivery: Biology, Engineering and Development Conference
9. GEN reports on growth of tissue engineering revenues
10. Engineering technology reveals eating habits of giant dinosaurs
11. Genetic Engineering & Biotechnology News unveils Biotech Boulevard
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
UA engineering professor uses aerospace materials to build endless pipeline
(Date:5/16/2017)... May 16, 2017  Veratad Technologies, LLC ( www.veratad.com ... age and identity verification solutions, announced today they will ... 2017, May 15 thru May 17, 2017, in ... International Trade Center. Identity impacts the ... in today,s quickly evolving digital world, defining identity is ...
(Date:5/6/2017)... RAM Group , Singaporean based ... in biometric authentication based on a novel  ... to perform biometric authentication. These new sensors are based on ... Ram Group and its partners. This sensor will have ... and security. Ram Group is a next generation ...
(Date:4/19/2017)... The global military biometrics market ... by the presence of several large global players. The ... major players - 3M Cogent, NEC Corporation, M2SYS Technology, ... 61% of the global military biometric market in 2016. ... military biometrics market boast global presence, which has catapulted ...
Breaking Biology News(10 mins):
(Date:10/12/2017)... CA (PRWEB) , ... October ... ... (https://www.onramp.bio/ ) has launched Rosalind™, the first-ever genomics analysis platform specifically designed ... bioinformatics complexity. Named in honor of pioneering researcher Rosalind Franklin, who made ...
(Date:10/11/2017)... USA (PRWEB) , ... October 11, 2017 , ... ComplianceOnline’s ... take place on 7th and 8th June 2018 in San Francisco, CA. The Summit ... as well as several distinguished CEOs, board directors and government officials from around the ...
(Date:10/11/2017)... ... ... Disappearing forests and increased emissions are the main causes of the evolving air ... living in larger cities are affected by air pollution related diseases. , That is ... globally - decided to take action. , “I knew I had to take action ...
(Date:10/10/2017)... Angeles, CA (PRWEB) , ... ... ... Inc., a development-stage cancer-focused pharmaceutical company advancing targeted antibody-drug conjugate (ADC) therapeutics, ... uses of targeted HPLN (Hybrid Polymerized Liposomal Nanoparticle), a technology developed in ...
Breaking Biology Technology: