Navigation Links
U.Va. researcher: Methane out, carbon dioxide in?
Date:9/26/2013

A University of Virginia engineering professor has proposed a novel approach for keeping waste carbon dioxide out of the atmosphere.

Andres Clarens, an assistant professor of civil and environmental engineering at U.Va.'s School of Engineering and Applied Science, and graduate student Zhiyuan Tao have published a paper in which they estimate the amount of carbon dioxide that could be stored in hydraulically fractured shale deposits after the methane gas has been extracted. Their peer-reviewed finding was published in Environmental Science and Technology, a publication of the American Chemical Society.

The team applied their model to the Marcellus Shale geological formation in Pennsylvania and found that the fractured rock has the potential to store roughly 50 percent of the U.S. carbon dioxide emissions produced from stationary sources between 2018 and 2030. According to his estimate, about 10 to 18 gigatonnes of carbon dioxide could be stored in the Marcellus formation alone. The U.S. has several other large shale formations that could provide additional storage.

The researchers' model is based on historical and projected methane production, along with published data and models for estimating the carbon dioxide capacity of the formations. Clarens said that production records are available for how much methane gas producers have already extracted from the Marcellus Shale, as well as estimates of how much more they expect to extract. That provides a basis for determining how much space will be left in the formation when the methane is gone, he said. Clarens said gas would be adsorbed into the pores of the shale and held securely.

"This would be a way of eating our cake and having it too," Clarens said. "We can drill the shale, pump out the gas and pump in the carbon dioxide.. I think this will get policymakers' attention."

He said his work deals with the chemical feasibility of the idea, and that additional studies must be performed to examine the economical, political and logistical implications.

"My field is carbon management high-pressure carbon dioxide chemistry," he said. "Right now, we are emitting huge levels of carbon dioxide, and we need new ideas on ways to store the waste."

Clarens, who said he has no connection with the oil and gas industry, knows some in the environmental movement oppose hydraulic fracturing because of possible risks to ground and surface waters. However, he thinks this type of extraction is inevitable in many places and it is important to preemptively develop new strategies for handling the environmental implications, especially those related to carbon dioxide.

"There are a lot of people who say we need to get away from carbon-based fuels, and that may be possible in a few decades, but right now, fossil fuels power everything," he said. "Finding ways to harvest these non-conventional fossil fuel sources without contributing to climate changes is a difficult but important challenge."

Clarens said he believes he and Tao are the first researchers to propose this strategy. He hopes this paper will contribute to a discourse on how best to responsibly develop this booming resource.

Clarens, who received his doctorate from the University of Michigan, did his undergraduate work at U.Va., receiving a bachelor's degree in chemical engineering in 1999.


'/>"/>

Contact: Matt Kelly
mkelly@virginia.edu
434-924-7291
University of Virginia
Source:Eurekalert

Related biology news :

1. Squid ink from Jurassic period identical to modern squid ink, U.Va. study shows
2. Study finds novel worm community affecting methane release in ocean
3. Tom Bowmans Climate Report delves into Arctic methane controversy
4. Methane emissions from natural gas local distribution focus of new study
5. NREL to help convert methane to liquid diesel
6. Scientists unravel the mystery of marine methane oxidation
7. Strange diet for methane consuming microorganisms
8. Study identifies prime source of ocean methane
9. How methane becomes fish food
10. Are methane hydrates dissolving?
11. Microbes make clean methane
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:4/13/2017)... According to a new market research report "Consumer IAM Market by ... Service, Authentication Type, Deployment Mode, Vertical, and Region - Global Forecast to ... USD 14.30 Billion in 2017 to USD 31.75 Billion by 2022, at ... ... MarketsandMarkets Logo ...
(Date:4/11/2017)... , April 11, 2017 No ... but researchers at the New York University Tandon ... of Engineering have found that partial similarities between ... systems used in mobile phones and other electronic ... The vulnerability lies in the fact ...
(Date:4/5/2017)... 5, 2017  The Allen Institute for Cell Science ... a one-of-a-kind portal and dynamic digital window into the ... the first application of deep learning to create predictive ... lines and a growing suite of powerful tools. The ... and future publicly available resources created and shared by ...
Breaking Biology News(10 mins):
(Date:5/23/2017)... ... May 22, 2017 , ... NetDimensions has been ranked as ... Globe™ for Corporate Learning, 2017. , Aragon Research defines Leaders as organizations who ... perform against those strategies. NetDimensions’ ranking as a Leader due to its strengths ...
(Date:5/23/2017)... ... 23, 2017 , ... Bacterial biofilms, surface adherent communities of bacteria that are ... from food poisoning and catheter infections to gum disease and the rejection of medical ... of dollars per year, there is currently a paucity of means for preventing their ...
(Date:5/22/2017)... ... May 22, 2017 , ... Cancer diagnostics and pathology ... B2 at the Association for Pathology Informatics Annual Summit at the ... demonstrating its Cancer Diagnostic Cockpit and Consultation Portal, Inspirata will present research it ...
(Date:5/18/2017)... (PRWEB) , ... May 18, 2017 , ... ... procedure on April 28, 2017 at the Prince Of Wales Private Hospital. The ... disc at level C6-C7. The patient failed conservative treatments prior to undergoing surgery. ...
Breaking Biology Technology: