Navigation Links
Turning to nature for inspiration
Date:2/19/2011

To build the next generation of sensors with applications ranging from medical devices to robotics to new consumer goods Chang Liu looks to biology.

Liu, professor of mechanical engineering and electrical engineering and computer science at Northwestern University's McCormick School of Engineering and Applied Science, is using insights from nature as inspiration for both touch and flow sensors areas that currently lack good sensors for recording and communicating the senses.

Liu will discuss his research in a symposium at the annual meeting of the American Association for the Advancement of Science (AAAS) in Washington, D.C., to be held from 1:30 to 4:30 p.m. Saturday, Feb. 19.

For the past 10 years, Liu has led a research group that develops artificial hair cell sensors. Hair cells provide a variety of sensing abilities for different animals: they help humans hear, they help insects detect vibration, and they form the lateral line system that allows fish to sense the flow of water around them.

"The hair cell is interesting because biology uses this same fundamental structure to serve a variety of purposes," Liu says. "This differs from how engineers typically design sensors, which are often used for a specific task."

By creating artificial hair cells using micro- and nanofabrication technology, Liu's group is increasing sensor performance while deepening the understanding of how different creatures use these sensors. For example, every fish in the world uses hair cells in the lateral line as sensors, but so far no manmade vehicle does. If a submarine had sensors similar to that of a fish, it could record much more information on water movement.

Liu's current focus is the medical application of these biologically inspired sensors. He hopes that artificial hair cells could be used to measure acoustics in an artificial cochlea or could be embedded as flow sensors in a wide variety of medical devices.

Liu is also developing new touch sensors to improve minimally invasive surgery techniques. Currently many minimally invasive procedures are conducted through a catheter that is inserted into the body and controlled by a doctor on the outside.

"During a heart treatment, the doctor controlling the catheter has no sense of touch and cannot tell if the catheter has touched the heart wall and successfully completed the therapeutic treatment," Liu explains. "We want to use microfabrication technology to put sensors on the end of the catheter to provide feedback."

In order to achieve his goals, Liu has assembled a multidisciplinary team that includes biologists, engineers, materials scientists and physicians. A mix of fundamental and applied research is necessary to make biologically inspired sensors a reality, he says.

"Using a bio-inspired approach is really important," Chang says. "Nature has a lot of wonderful examples that can challenge us. No matter how good some of our technology is, we still can't do some of the basic things that nature can. Nature holds the secret for the next technology breakthrough and disruptive innovation. We are on a mission to find it."


'/>"/>

Contact: Megan Fellman
fellman@northwestern.edu
847-491-3115
Northwestern University
Source:Eurekalert

Related biology news :

1. Discovery may lead to turning back the clock on ovarian cancer
2. Turning school ground natural areas into environmental labs
3. Thesis analyzes factors responsible for the case of Basque natural cider turning bitter
4. Brain tumors: Tissue stem cell turning into tumor stem cell
5. Duke technique is turning proteins into glass
6. Turning sunlight into liquid fuels
7. Turning over a new leaf for future energy supplies
8. Pregnancy not turning minds to mush: Study
9. Turning freshwater farm ponds into crab farms
10. When nature calls
11. Study identifies new genetic signatures of breast cancer drug resistance
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:11/29/2016)... 2016 BioDirection, a privately held medical device ... objective detection of concussion and other traumatic brain injury ... a meeting with the U.S. Food and Drug Administration ... Package. During the meeting company representatives reviewed plans for ... to commencement of a planned pilot trial. ...
(Date:11/22/2016)... , November 22, 2016 According to the new ... Palm Print, Face, Vein, Signature, Voice), Multi-Factor), Component (Hardware and Software), Function ... by MarketsandMarkets, the market is expected to grow from USD 10.74 Billion ... of 16.79% between 2016 and 2022. Continue ... ...
(Date:11/17/2016)...  AIC announces that it has just released a new white paper authored by ... plus high speed data transfer storage solutions. Photo - http://photos.prnewswire.com/prnh/20161116/440463 ... ... ... Setting up a high performance computing or HPC system can ...
Breaking Biology News(10 mins):
(Date:12/7/2016)... McLean, VA (PRWEB) , ... December 07, 2016 ... ... peer-reviewed medical journal has concluded that “in the setting of previously treated, advanced ... Further refinement in defining the optimal patient population and timing of blood sampling ...
(Date:12/7/2016)... 2016 Neogen Corporation (NASDAQ: NEOG ... Kephart as its chief science officer — a ... responsibilities at Neogen effective Jan. 1. Kephart ... agribusiness unit of Thermo Fisher Scientific, as well as ... His extensive industry experience also includes the management of ...
(Date:12/7/2016)... , Dec. 7, 2016 /PRNewswire/ - Zenith Capital Corp. ("Zenith" or ... will be presented at the Company,s Annual and Special Meeting. ... Shareholders will take place on Thursday, December 15, 2016 at ... Hall (Room EC1040), 4825 Mount Royal Gate SW, ... A notice of meeting and management information circular, containing the ...
(Date:12/7/2016)... Dec. 7, 2016  Biocom, the association for the ... below following passage of 21 st Century Cures legislation ... 30 by a 392-26 vote and in the Senate on ... attributed to Joe Panetta , president & CEO of ... give hope to millions of patients around the world. The ...
Breaking Biology Technology: