Navigation Links
Ticking of cellular clock promotes seismic changes in the chromatin landscape associated with aging
Date:10/3/2010

LA JOLLA, CA-Like cats, human cells have a finite number of lives-once they divide a certain number of times (thankfully, more than nine) they change shape, slow their pace, and eventually stop dividing, a phenomenon called "cellular senescence".

Biologists know that a cellular clock composed of structures at the chromosome end known as telomeres records how many "lives" a cell has expended. Up to now, investigators have not yet defined how the clock's ticking signals the approach of cellular oblivion.

In a study published in the Oct. 3, 2010, issue of Nature Structural and Molecular Biology, a team led by Jan Karlseder, Ph.D., at the Salk Institute for Biological Studies reports that as cells count down to senescence and telomeres wear down, their DNA undergoes massive changes in the way it is packaged. These changes likely trigger what we call "aging".

"Prior to this study we knew that telomeres get shorter and shorter as a cell divides and that when they reach a critical length, cells stop dividing or die," said Karlseder, an associate professor in the Molecular and Cell Biology Laboratory. "Something must translate the local signal at chromosome ends into a huge signal felt throughout the nucleus. But there was a big gap in between."

Karlseder and postdoctoral fellow Roddy O'Sullivan, Ph.D., began to close the gap by comparing levels of proteins called histones in young cells-cells that had divided 30 times-with "late middle-aged" cells, which had divided 75 times and were on the downward slide to senescence, which occurs at 85 divisions. Histone proteins bind linear DNA strands and compress them into nuclear complexes, collectively referred to as chromatin.

Karlseder and O'Sullivan found that aging cells simply made less histone protein than do young cells. "We were surprised to find that histone levels decreased as cells aged," said O'Sullivan, the study's first author. "These proteins are required throughout the genome, and therefore any event that disrupts this production line affects the stability of the entire genome."

The team then undertook exhaustive "time-lapse" comparisons of histones in young versus aging cells and confirmed that marked differences in the abundance and variety of histones were evident at every step as cells moved through cell division.

O'Sullivan calls the "default" histone pattern displayed by young cells "happy, healthy chromatin." By contrast, he says, aging cells appear to undergo stress as they duplicate their chromosomes in preparation for cell division and have difficulty restoring a "healthy" chromatin pattern once division is complete.

Comparisons of histone patterns in cells taken from human subjects-a 9- versus a 92-year-old-dramatically mirrored histone trends seen in cell lines. "These key experiments suggest that what we observe in cultured cells in a laboratory setting actually occurs and is relevant to aging in a population," says Karlseder.

The initiation of diseases associated with aging, such as cancer, is largely attributed to DNA, or genetic, damage. But this study suggests that aging itself is infinitely complex: that progressive telomere shortening hastens chromosomal aging by changing the way genes entwine with histones, so-called "epigenetic" changes. How DNA interacts with histones has enormous impact on whether genes are expressed-hence the current intense interest in the relationship of the epigenomic landscape to disease states.

Rescue experiments in which the team cosmetically enhanced aging cells confirmed that signals emitted by eroding telomeres drove epigenetic changes. When aging cells were engineered to express telomerase, the enzyme that restores and extends stubby telomeres, those rejuvenated cells showed histone levels reminiscent of "happy, healthy chromatin," and a partial return to a youthful chromatin profile.

Lest you sink your savings into schemes to elongate your telomeres, beware. "The flip side of elongating telomeres is that you enable cells to grow for much longer periods and can generate what are called "immortal" cells," says Karlseder. "That takes you one step closer to cancer cell development."

Up to now, the Karlseder lab has mostly focused on interactions between telomeres and DNA repair mechanisms. This paper now pushes them into the field of epigenetics. "We will continue to examine epigenetic changes in cells at different ages," says Karlseder. "We now want to determine if histone changes follow a linear process or whether they kick in as we age."


'/>"/>

Contact: Gina Kirchweger
kirchweger@salk.edu
858-453-410-01340
Salk Institute
Source:Eurekalert  

Related biology news :

1. Pitt/Iowa team finds cellular structural molecule can be toxic: Makes pneumonia worse
2. UCI-Scripps study links cellular motors to memory
3. Mount Sinai researchers discover new mechanism behind cellular energy conversion
4. SSRIs may pack more punch at the cellular level than believed
5. An IRCM researcher pinpoints the cellular mechanism responsible for modulating the permeability of blood vessels
6. A cellular housekeeper, and potential target of obesity drugs, caught in action
7. Origins of multicellularity: All in the family
8. Biologists identify a new clue into cellular aging
9. Researchers demystifying complex cellular communications hubs found in sensory neurons
10. Intracellular express -- why transport protein molecules have brakes
11. Cellular mechanical forces may initiate angiogenesis
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
Ticking of cellular clock promotes seismic changes in the chromatin landscape associated with aging
(Date:6/16/2016)... , June 16, 2016 ... is expected to reach USD 1.83 billion by ... View Research, Inc. Technological proliferation and increasing demand ... are expected to drive the market growth. ... The development of advanced multimodal techniques ...
(Date:6/7/2016)... June 7, 2016  Syngrafii Inc. and San ... relationship that includes integrating Syngrafii,s patented LongPen™ eSignature ... This collaboration will result in greater convenience for ... union, while maintaining existing document workflow and compliance ... ...
(Date:6/2/2016)... 2, 2016 Perimeter Surveillance & ... Systems, Physical Infrastructure, Support & Other Service  ... offers comprehensive analysis of the global Border ... generate revenues of $17.98 billion in 2016. ... a leader in software and hardware technologies for advanced ...
Breaking Biology News(10 mins):
(Date:6/23/2016)... , June 23, 2016   EpiBiome , ... secured $1 million in debt financing from Silicon Valley ... up automation and to advance its drug development efforts, ... new facility. "SVB has been an incredible ... the services a traditional bank would provide," said Dr. ...
(Date:6/23/2016)... 23, 2016 Apellis Pharmaceuticals, Inc. today ... trials of its complement C3 inhibitor, APL-2. The ... ascending dose studies designed to assess the safety, ... injection in healthy adult volunteers. Forty ... a single dose (ranging from 45 to 1,440mg) ...
(Date:6/23/2016)... ... June 23, 2016 , ... ClinCapture, ... Pennsylvania Convention Center and will showcase its product’s latest features from June 26 ... presenting a scientific poster on Disrupting Clinical Trials in The Cloud during the ...
(Date:6/23/2016)... PUNE, India , June 23, 2016 /PRNewswire/ ... culture media market research report to its pharmaceuticals ... company profiles, product details and much more. ... market spread across 151 pages, profiling 15 companies ... now available at http://www.reportsnreports.com/reports/601420-global-cell-culture-media-industry-2016-market-research-report.html . ...
Breaking Biology Technology: