Navigation Links
Technique simplifies the creation of high-tech crystals

Highly purified crystals that split light with uncanny precision are key parts of high-powered lenses, specialized optics and, potentially, computers that manipulate light instead of electricity. But producing these crystals by current techniques, such as etching them with a precise beam of electrons, is often extremely difficult and expensive.

Now, researchers at Princeton and Columbia universities have proposed a new method that could allow scientists to customize and grow these specialized materials, known as photonic crystals, with relative ease.

"Our results point to a previously unexplored path for making defect-free crystals using inexpensive ingredients," said Athanassios Panagiotopoulos, the Susan Dod Brown Professor of Chemical and Biological Engineering and one of the paper's authors. "Current methods for making such systems rely on using difficult-to-synthesize particles with narrowly tailored directional interactions."

In an article published online July 21 in the journal Nature Communications, the researchers proposed that photonic crystals could be created from a mixture in which particles of one type are dispersed throughout another material. Called colloidal suspensions, these mixtures include things like milk or fog. Under certain conditions, these dispersed particles can combine into crystals.

Creating solids from colloidal suspensions is not a new idea. In fact, humans have been doing it since the invention of cheese and the butter churn. But there is a big difference between making a wheel of cheddar and a crystal pure enough to split light for an optical circuit.

One of the main challenges for creating these optical crystals is finding a way to create uniform shapes from a given colloidal mixture. By definition, crystals' internal structures are arranged in an ordered pattern. The geometry of these patterns determines how a crystal will affect light. Unfortunately for optical engineers, a typical colloidal mixture will produce crystals with different internal structures.

In their paper, the researchers demonstrate a method for using a colloidal suspension to create crystals with the uniform structures needed for high-end technologies.

Essentially, the researchers showed that adding precisely sized chains of molecules called polymers to the colloid mixture allows them to impose order on the crystal as it forms.

"The polymers control what structures are allowed to form," said Nathan Mahynski, a graduate student in chemical and biological engineering at Princeton and the paper's lead author. "If you understand how the polymer interacts with the colloids in the mixture, you can use that to create a desired crystal."

The researchers created a computer model that simulated the formation of crystals based on principles of thermodynamics, which state that any system will settle into whatever structure requires the least energy. Panagiotopoulos's group analyzed the equilibrium state of different possible crystal shapes to understand how they were affected by the presence of different polymers.

They found that when the crystals formed, tiny amounts of polymer were trapped between the colloids as they came together. It looks like mortar in a stone wall, although the researchers say the polymer has no adhesive property. These polymer-filled spaces, called interstices, play a key role in determining the energy state of a crystal.

"Changing the polymer affects which crystal form is most stable," Mahynski said. "As the crystal forms, the polymer helps set the crystal's shape."

The polymer and the forming crystal work like a lock and key they fit together in the crystal structure with the lowest energy state. Because of this, scientists can use their knowledge of polymer physics to tailor crystal structures.

Because the researchers conducted their analysis using computer modeling, they cautioned that experimentally reproducing the results in a lab presents some difficult challenges. One early concern involved the uniformity of colloids in the suspension; models often assume colloids are all the same shape and size but this rarely occurs in natural systems. Anticipating this, the researchers tested their theory using a non-uniform solution.

"One of the things we did in our study was to look at realistic systems, that were realizable in the lab, and it appears that the phenomenon that we describe is robust," said Sanat Kumar, a professor and chair of chemical engineering at Columbia and a researcher on the project. "That tells us that there is no conceptual problem to realizing this in the lab."

Gravity could also pose a problem for experimenters, although Kumar pointed out that similar experiments have overcome this difficulty. Gravity causes crystals to filter to the bottom of a container and pack in mismatched layers. This can make it very difficult, and perhaps impractical, to try to produce the crystals by using a colloid mix in a tank.

But Mahynski said there are several techniques that could avoid problems. For example, to deal with gravity, researchers could create the crystals in a very thin film. That approach should avoid the disruption of gravity pulling the crystals to the bottom.

It also could be important to select the right size of colloid and type of polymer for a successful experimental result. Panagiotopoulos said that one possible path for these ideas to be experimentally verified will be to use polymer chains that are stiff, such as double-stranded DNA, together with micrometer-sized colloids.

Contact: john sullivan
Princeton University, Engineering School

Related biology news :

1. NUS scientists use low cost technique to improve properties and functions of nanomaterials
2. New technique uses simulated human heart to screen drugs
3. New technique maps lifes effects on our DNA
4. Innovative technique may transform the hunt for new antibiotics and cancer therapies
5. Grass-in-the-ear technique sets new trend in chimp etiquette
6. Research team pursues techniques to improve elusive stem cell therapy
7. Big data technique improves monitoring of kidney transplant patients
8. New digital fabrication technique creates interlocking 3D-printed ceramic PolyBricks
9. Criminal profiling technique targets killer diseases
10. Developing an improved liposuction technique that melts fat
11. New technique to prevent anal sphincter lesions due to episiotomy during child delivery
Post Your Comments:
Related Image:
Technique simplifies the creation of high-tech crystals
(Date:5/3/2016)... , May 3, 2016  Neurotechnology, a provider ... MegaMatcher Automated Biometric Identification System (ABIS) , ... multi-biometric projects. MegaMatcher ABIS can process multiple complex ... any combination of fingerprint, face or iris biometrics. ... SDK and MegaMatcher Accelerator , which ...
(Date:4/28/2016)... 2016 First quarter 2016:   ... with the first quarter of 2015 The gross margin ... (loss: 18.8) and the operating margin was 40% (-13) ... Cash flow from operations was SEK 249.9 M (21.2) , ... unchanged, SEK 7,000-8,500 M. The operating margin for 2016 ...
(Date:4/26/2016)... , April 27, 2016 ... the  "Global Multi-modal Biometrics Market 2016-2020"  report to ... ) , The analysts forecast the ... CAGR of 15.49% during the period 2016-2020.  ... number of sectors such as the healthcare, BFSI, ...
Breaking Biology News(10 mins):
(Date:6/27/2016)... June 27, 2016  Sequenom, Inc. (NASDAQ: ... healthier lives through the development of innovative products and ... the United States denied its petition ... claims of Sequenom,s U.S. Patent No. 6,258,540 (",540 Patent") ... established by the Supreme Court,s Mayo Collaborative Services v. ...
(Date:6/27/2016)... Chapel Hill, N.C. (PRWEB) , ... June 27, ... ... of U.S. commercial operations for Amgen, will join the faculty of the ... will serve as adjunct professor of strategy and entrepreneurship at UNC Kenan-Flagler, with ...
(Date:6/24/2016)... SAN DIEGO , June 24, 2016 /PRNewswire/ ... that more sensitively detects cancers susceptible to PARP ... individual circulating tumor cells (CTCs). The new test ... of HRD-targeted therapeutics in multiple cancer types. ... therapies targeting DNA damage response pathways, including PARP, ...
(Date:6/23/2016)... Wausau, WI (PRWEB) , ... June 23, 2016 ... ... probiotic supplements, is pleased to announce the launch of their brand, UP4™ Probiotics, ... supplements for over 35 years, is proud to add Target to its list ...
Breaking Biology Technology: