Navigation Links
Swimming upstream: Molecular approaches to better understand male infertility
Date:8/24/2010

PHILADELPHIA - Male infertility is a common medical problem, affecting millions of men in the United States annually. Its causes include an inability to make productive sperm. Now, using yeast as a model organism, researchers at the University of Pennsylvania School of Medicine are beginning to identify the molecular signals that could in part underlie that problem.

Shelley Berger PhD, the Daniel S. Och University Professor, and director of the Epigenetics Program at Penn, with postdoctoral fellow Jrme Govin, PhD, and colleague Saadi Khochbin of INSERM in France, screened yeast to find mutants that were unable to form spores a process that is analogous to sperm formation in mammals. Their goal was to map epigenetic processes-- those that influence gene expression in cells as they undergo sperm formation. By piecing together the mechanics of the process, ultimately, they can understand how that process can go awry. They found several sites on proteins that may be important epigenetic regulators of sperm and egg formation: Novel chemical changes key to gamete formation could be potential biomarkers of human male infertility. They published their findings this month in Genes and Development.

Epigenetics, the factors influencing an organism's genetics that are not encoded in the DNA itself, are more subtle than genetic mutations, which typically affect the function of proteins a cell produces by following the recipe coded in the DNA. Epigenetic factors instead alter the readout of that code, ramping their expression up or down as if with a dimmer switch.

A process under strong epigenetic control is sperm and egg formation.

Sperm and eggs (gametes) contain only a single chromosome of each type -- they contain 23 chromosomes instead of the 46 found in most human body cells, which have two copies of each (one copy inherited from each parent). The process of gamete formation involves a specialized form of cell division called meiosis, which is tightly regulated by molecular processes within the cell. The question is, what are the epigenetic players involved in that process?

To begin to answer that question Berger, Govin, and their colleagues developed a way to systematically mutate portions of two proteins, histone H3 and histone H4, looking for defects in spore formation.

DNA in a cell is not like a free-floating tangle of yarn; it is tightly wrapped around protein spindles. Those spindles are built of histone proteins, and chemical changes to these spool proteins can either loosen or tighten their interaction with DNA, affecting, among other things, gene expression. Berger and her team used their mutants more than 100 were tested -- to identify novel histone modifications key to gamete formation.

According to Berger and Govin's analysis, sites on both histone H3 and H4 turned out be important. One critical modification site the team picked up is threonine-11 on histone H3 (H3T11), the phosphorylation of which is required to complete meiosis. The researchers also found a trio of lysines on histone H4, whose acetylation enables efficient compaction of chromosomal DNA into mature spores. The team demonstrated that these modifications also occur during mouse sperm formation and identified some candidates for the proteins that both "read" and "write" those modifications, as well.

Berger said the study is noteworthy on several levels. First, it establishes a screening method to identify epigenetic changes during sperm or egg formation, a process Govin is already applying to other histone proteins. Second, it proves that yeast spore formation closely models the mechanisms of mammalian sperm formation, a key advance given the complexity of mammalian genetics and the technical hurdles inherent in running a genetic screen in mice. Finally, assuming these epigenetic marks are also present and serve similar functions in humans, the study identifies potential biomarkers of human male infertility.

"It is almost certain that some fertility problems relate to epigenetics," Govin said.

Given the conservation of the process of sperm formation across evolutionary time, said Berger, it is likely that the histone modifications identified in this study represent just the tip of the proverbial iceberg.

"We are going to find brand new chromatin regulatory mechanisms that will be conserved all the way from yeast to mouse," Berger predicted.


'/>"/>

Contact: Karen Kreeger
karen.kreeger@uphs.upenn.edu
215-349-5658
University of Pennsylvania School of Medicine
Source:Eurekalert

Related biology news :

1. Biosensors reveal how single bacterium gets the message to split into a swimming and a stay-put cell
2. New molecular signaling cascade increases glucose uptake
3. AACR hosts molecular diagnostics conference in Denver, Colo.
4. American Society for Biochemistry and Molecular Biology honors 11 outstanding scientists
5. WPI research shows how cranberry juice fights bacteria at the molecular level
6. Molecular biology provides clues to health benefits of olive oil
7. NSF grant will develop new online hub for biochemistry, molecular biology educators
8. Elsevier announces the winner of the Ahmed Zewail prize in molecular sciences
9. Molecular discovery suggests new strategy to fight cancer drug resistance
10. Genetics Society of America to host 2010 Yeast Genetics & Molecular Biology Meeting
11. Molecular methods are not sufficient in systematics and evolution
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:3/6/2017)... MATEO, Calif. , March 6, 2017 /PRNewswire/ ... marketing and sales technology, today announced Predictive Sales ... solution for infusing actionable sales intelligence into Salesforce. ... to automatically enable their sales organizations with deep ... messages that allow for intelligent engagement. Predictive Sales ...
(Date:3/2/2017)... MELBOURNE, Australia , March 2, 2017 ... Therapeutics Ltd (ASX: CYP), has signed an agreement ... researchers from the Monash Biomedicine Discovery Institute and Department ... , to conduct a further preclinical study to support ... the treatment of asthma.  Asthma is ...
(Date:2/28/2017)... Spanien, 27. Februar 2017  EyeLock LLC, ein marktführendes ... seine erstklassige biometrische Lösung zur Iris-Erkennung auf ... X16 LTE auf dem Mobile World Congress ... Qualcomm-Stand in Halle 3, Stand 3E10, vorstellen. ... Sicherheitsplattform Qualcomm Haven™ – eine Kombination aus ...
Breaking Biology News(10 mins):
(Date:3/28/2017)... 28, 2017 Dr. Chris Yu ... corporation Anpac Bio-Medical Science Company , announced ... record, processing and reporting over 40,000 cases worldwide ... (CDA) liquid biopsy tests. Described ... Summit publications, Anpac Bio,s CDA medical devices and ...
(Date:3/28/2017)... ... March 28, 2017 , ... Currently symptomatic therapies for Parkinson’s ... study published in STEM CELLS suggests that human neural stem cell (hNSC) transplantation ... produce more neural cells. , Strategies involving transplantation of these cells into ...
(Date:3/28/2017)... 2017 /PRNewswire/ -RepliCel Life Sciences Inc. (OTCQB: REPCF) (TSXV: RP) ... safety and clinical data from its phase 1/2 tendon repair ... follicle-derived fibroblasts (RCT-01) as a treatment for Achilles tendinosis. ... The ... profile at 6 months and showed no serious adverse events ...
(Date:3/27/2017)... , March 27, 2017 Roka Bioscience, Inc. (NASDAQ: ... solutions for the detection of foodborne pathogens,  today announced that ... & Company Spring 2017 Convention on March 29 at 9:50am ... Marriott Marquis. About Roka Bioscience ... Roka Bioscience ...
Breaking Biology Technology: