Navigation Links
Study of placenta unexpectedly leads to cancer gene

University of Rochester Medical Center scientists discovered a gene mutation that impairs the placenta and also is influential in cancer development, according to a study published online December 16, 2008, in the journal PLoS (Public Library of Science) Biology.

The investigation is the first to link the key placental gene, SENP2, to the well-known p53 protein, which is defective in 50 percent of all cancers.

Until now, the SENP2 gene's role in early embryo development was not known. As a result of making the connection between SENP2 and the potent cancer stimuli, it will be possible to gain more insight into the complex genetic network involved in cancer, and to develop new therapies, said lead author Wei Hsu, Ph.D., associate professor of Biomedical Genetics and Oncology, of the James P. Wilmot Cancer Center.

Hsu and former graduate student Shang-Yi Chiu, currently a postdoctoral fellow at Howard Hughes Medical Institute, Dana-Farber Cancer Institute at Harvard University, have been investigating how cellular signaling triggered by gene mutations affect embryo development in mice. The goal is to better understand the genetic causes and possible treatments for a number of diseases.

"What we discovered was an unexpected interaction between an old player, p53, and a new player, SENP2," said Hsu, who also has an appointment in the URMC Center for Oral Biology.

SENP2 (SUMO-specific protease 2) is highly expressed in trophoblast cells, which are the stem cells required to form the placenta. The placenta surrounds, protects and nourishes the developing fetus. While investigating disruption of placental formation in a mouse model, Hsu's team observed that embryos lacking SENP2 failed to properly make placental tissue.

The failure occurred, researchers discovered, because the cells that give rise to the placental tissues had undergone cell cycle arrest, and were trapped in a state of suspended growth. Next, researchers set out to find SENP2 target proteins that could be involved in arresting cell growth.

In the journey, they discovered that p53 or proteins that modify p53 activity were harmed by the SENP2 deficiency. The consequence was that p53 could no longer perform its vital job as a tumor suppressor. When p53 is functioning normally, it acts as a crucial guardian of the genome, or a checkpoint, by fixing genetic mistakes as they arise.

But when the p53 molecule is aberrantly regulated, either by an outside virus or an inherited genetic abnormality, the risk of cancer is higher because p53 cannot perform its job.

Researchers also found that SENP2 indirectly regulates p53 activity through another protein called Mdm2, which was already known to be involved in some cancers. In cells lacking SENP2, the Mdm2 becomes trapped in the nucleus, and is unable to halt p53, allowing it to accumulate within the cell. This disruption leads to distinct problems in cell cycle progression and normal gene replication.


Contact: Leslie Orr
University of Rochester Medical Center

Related biology news :

1. New study pardons the misunderstood egg
2. Ocean fish farming harms wild fish, study says
3. Proactive care saves lives of seniors, study finds
4. Orangutans spontaneous whistling opens new chapter in study of evolution of speech
5. First-ever socioeconomic study on coral reefs points to challenges of coastal resource management
6. Study reveals effects of unconscious exposure to advertisements
7. Rice University study finds possible clues to epilepsy, autism
8. Researchers study virus with unusual properties
9. Nanotechnology culture war possible, says Yale study
10. Gene therapy corrects sickle cell disease in laboratory study
11. USC researchers head global effort to study genetic risks that contribute to psychiatric diseases
Post Your Comments:
(Date:11/10/2015)... 2015 About signature verification ... to identify and verify the identity of an ... the secure and accurate method of authentication and ... individual because each individual,s signature is highly unique. ... dynamic signature of an individual is compared and ...
(Date:10/29/2015)... MINNETONKA, Minn. , Oct. 29, 2015   ... that supports the entire spectrum of clinical research, is ... the Minnesota High Tech Association (MHTA) as one of ... in the "Software – Small and Growing" category. The ... and individuals who have shown superior technology innovation and ...
(Date:10/29/2015)... 2015 NXTD ) ("NXT-ID" ... on the growing mobile commerce market and creator ... a leading marketplace to discover and buy innovative ... wallet on StackSocial for this holiday season.   ... "Company"), a biometric authentication company focused on the ...
Breaking Biology News(10 mins):
(Date:11/24/2015)... SAN DIEGO , Nov. 24, 2015 Halozyme Therapeutics, ... Jaffray Healthcare Conference in New York on ... Dr. Helen Torley , president and CEO, will provide a ... New York at 1:00 p.m. ET/10:00 a.m. ... communication and investor relations, will provide a corporate overview. --> ...
(Date:11/24/2015)... 2015 /PRNewswire/ - Aeterna Zentaris Inc. (NASDAQ:  AEZS) (TSX: AEZ) ... of the Toronto Stock Exchange, confirms that as of ... corporate developments that would cause the recent movements in ... --> About Aeterna Zentaris Inc. ... Aeterna Zentaris is a specialty biopharmaceutical company engaged ...
(Date:11/24/2015)... ... 24, 2015 , ... The Academy of Model Aeronautics (AMA), led by its ... as Multirotor Grand Prix, to represent the First–Person View (FPV) racing community. , FPV ... embraced this type of racing and several new model aviation pilots have joined the ...
(Date:11/24/2015)... , Nov. 24, 2015 /PRNewswire/ - Aeterna Zentaris ... today that the remaining 11,000 post-share consolidation (or ... Warrants (the "Series B Warrants") subject to the ... on November 23, 2015, which will result in ... giving effect to the issuance of such shares, ...
Breaking Biology Technology: