Navigation Links
Study demonstrates cells can acquire new functions through transcriptional regulatory network
Date:3/14/2012

Researchers at the RIKEN Omics Science Center (OSC) have successfully developed and demonstrated a new experimental technique for producing cells with specific functions through the artificial reconstruction of transcriptional regulatory networks. As an alternative to induced pluripotent stem cells, the technique promises to enable faster and more efficient production of functional cells for use in cancer therapy and a variety of other areas.

Starting with the first-ever production of induced pluripotent stem cells (iPS cells) in 2006, cell reprogramming - the genetic conversion of cells from one type to another - has revolutionized stem cell research and opened the door to countless new medical applications. Inducing such reprogramming, however, is difficult, inefficient and time-consuming, involving a largely hit-or-miss process of selecting candidate genes.

In the current study, the OSC research team explored an alternative to iPS cells based on the use of transcriptional regulatory networks (TRNs), networks of transcription factors and the genes they regulate. Previous research by the team characterized the dynamic regulatory activities of such transcription factors during cellular differentiation from immature cell (monoblast) to developed (monocyte-like) cell using human acute monocytic leukemia cell lines (THP-1). Their findings led them to hypothesize that functional characteristics of the cell-type are maintained by its specific TRN.

Their new paper builds on this hypothesis, establishing a series of new methods for identifying transcription factors (TFs) for the monocyte network, which play a key role in inducing cell-specific functions. Four core TF genes of the monocyte TRN, identified using this approach, were introduced into human fibroblast cells, expression of which activated monocytic functions including phagocytosis, inflammatory response and chemotaxis. Genome-wide gene expression analysis of this reprogrammed cell showed monocyte-like gene expression profile, demonstrating that reconstruction of a functional TRN can be achieved by introducing core TRN elements into unrelated cell types.

Published in the journal PLoS ONE, the newly-developed methods open the door to a new form of direct cell reprogramming for clinical use which avoids the pitfalls of embryonic stem (ES) and induced pluripotent stem (iPS) cells, charting a course toward novel applications in regenerative medicine and drug discovery.


'/>"/>

Contact: RIKEN Global Relations Office
gro-pr@riken.jp
81-484-621-225
RIKEN
Source:Eurekalert

Related biology news :

1. University of Houston study shows BP oil spill hurt marshes, but recovery possible
2. EU-funded study underlines importance of Congo Basin for global climate and biodiversity
3. Crystal structure of archael chromatin clarified in new study
4. Pycnogenol (French maritime pine bark extract) shown to improve menopause symptoms in new study
5. 15-year study: When it comes to creating wetlands, Mother Nature is in charge
6. BYU study: Using a gun in bear encounters doesnt make you safer
7. Study jointly led by UCSB researcher supports theory of extraterrestrial impact
8. New study will help protect vulnerable birds from impacts of climate change
9. Law that regulates shark fishery is too liberal: UBC study
10. Study by UC Santa Barbara researchers suggests that bacteria communicate by touch
11. Leatherback turtle migration study identifies Pacific danger zones for endangered species
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:5/16/2017)... , May 16, 2017  Veratad Technologies, LLC ( ... online age and identity verification solutions, announced today they ... Conference 2017, May 15 thru May 17, 2017, in ... and International Trade Center. Identity impacts ... and in today,s quickly evolving digital world, defining identity ...
(Date:4/19/2017)... The global military biometrics market ... by the presence of several large global players. The ... major players - 3M Cogent, NEC Corporation, M2SYS Technology, ... 61% of the global military biometric market in 2016. ... military biometrics market boast global presence, which has catapulted ...
(Date:4/13/2017)... PUNE, India , April 13, 2017 According ... Identity Proofing, Identity Authentication, Identity Analytics, Identity Administration, and Authorization), Service, Authentication ... by MarketsandMarkets™, the IAM Market is expected to grow from USD 14.30 ... Annual Growth Rate (CAGR) of 17.3%. ... ...
Breaking Biology News(10 mins):
(Date:10/12/2017)... Iowa (PRWEB) , ... October 12, 2017 , ... ... based in Vilnius, Lithuania, announced today that they have entered into a multiyear ... is to provide CRISPR researchers with additional tools for gene editing across all ...
(Date:10/12/2017)... , ... October 12, 2017 , ... ... Wound Market with the addition of its newest module, US Hemostats & Sealants. ... for thrombin hemostats, absorbable hemostats, fibrin sealants, synthetic sealants and biologic sealants used ...
(Date:10/12/2017)... ... October 12, 2017 , ... ... first-ever genomics analysis platform specifically designed for life science researchers to analyze ... pioneering researcher Rosalind Franklin, who made a major contribution to the discovery ...
(Date:10/11/2017)... , ... October 11, 2017 , ... ... gene in its endogenous context, enabling overexpression experiments and avoiding the use of ... small RNA guides is transformative for performing systematic gain-of-function studies. , This ...
Breaking Biology Technology: