Navigation Links
Student innovation at Rensselaer holds key to safer remote detection of dangerous materials
Date:2/28/2011

Troy, N.Y. Benjamin Clough has developed a novel method for eavesdropping on terahertz information hidden in invisible plasma acoustic bursts. The doctoral student at Rensselaer Polytechnic Institute has demonstrated a promising technique that employs sound waves to boost the distance from which researchers can use powerful terahertz technology to remotely detect hidden explosives, chemicals, and other dangerous materials.

Clough, a student in the Department of Electrical, Computer, and Systems Engineering at Rensselaer, is one of three finalists for the 2011 $30,000 Lemelson-MIT Rensselaer Student Prize. A public ceremony announcing this year's winner will be held at 7 p.m. on Wednesday, March 9 in the auditorium of the Rensselaer Center for Biotechnology and Interdisciplinary Studies. For more information on the ceremony visit: http://www.eng.rpi.edu/lemelson/

Clough's project is titled "Terahertz Enhanced Acoustics," and his faculty adviser is Xi-Cheng Zhang, the J. Erik Jonsson Professor of Science at Rensselaer and director of the university's Center for Terahertz Research.

The Rensselaer Center for Terahertz Research is one of the most active groups worldwide to apply terahertz wave technology for security and defense applications. Sensors using terahertz waves can penetrate packaging materials or clothing and identify the unique terahertz "fingerprints" of many hidden materials. Terahertz waves occupy a large segment of the electromagnetic spectrum between the infrared and microwave bands. Unlike X-rays and microwaves, terahertz radiation is very low energy and poses no known health threat to humans.

A key practical limitation of terahertz technology, however, is that it only works over short distances. Naturally occurring moisture in air absorbs terahertz waves, weakening the signal and sensing capabilities. This distance limitation is not ideal for applications in bomb or hazardous material detection, where the human operator wants to be as far away as possible from the potential threat.

Clough's patent-pending solution to this problem is a new method for using sound waves to remotely "listen" to terahertz signals from a distance. Focusing two laser beams into air creates small bursts of plasma, which in turn create terahertz pulses. Another pair of lasers is aimed near the target of interest to create a second plasma for detecting the terahertz pulses after they have interacted with the material. This detection plasma produces acoustic waves as it ionizes the air. Clough discovered that by using a sensitive microphone to "listen" to the plasma, he could detect terahertz wave information embedded in these sound waves. This audio information can then be converted into digital data and instantly checked against a library of known terahertz fingerprints, to determine the chemical composition of the mystery material.

So far, Clough has successfully demonstrated the ability to use acoustics to identify the terahertz fingerprints from several meters away. He has separately demonstrated plasma acoustic detection from 11 meters, limited only by available lab space. Along with the increased distance from the potentially hazardous material, an additional advantage is that his system does not require a direct line of sight to collect signals, as the microphone can still capture the audio information. Potential applications of Clough's invention, which circumvents the fundamental limitations of remote terahertz spectroscopy, include environmental monitoring of atmospheric conditions, monitoring smokestack emissions, inspecting suspicious packages, or even detecting land mines all from a safe distance.

Clough has presented his findings at several international conferences, and the details of his work have been published in Optics Letters and Physical Review E. His new method for terahertz sensing has created the possibility to obtain terahertz spectroscopic information from a distance, bypassing a key limitation of high terahertz absorption by water vapor in air.

A National Science Foundation Integrative Graduate Education and Research Traineeship (IGERT) fellow, Clough is deeply committed to his research activities. He received the Rensselaer Founders Award of Excellence in 2009, as well as the Rensselaer NSF IGERT Best Presenter Award in 2010.

Hailing from Albuquerque, N.M., Clough grew up immersed in science and technology. He inherited a love of research from his father, a retired chemist, and a strong work ethic from his mother, a retired professor of nursing. Along with his parents, Clough's wife, Kara, and older sister, Sandy, are rooting for him to win the 2011 Lemelson-MIT Rensselaer Student Prize. Clough said the idea for his innovation struck him while relaxing on the beach in Mexico during a winter vacation with his family. Outside the lab and classroom, he enjoys a variety of activities including playing soccer, snowboarding, and backpacking with his wife and friends.

Clough received his bachelor's degree in electrical engineering from the University of New Mexico. He joined Rensselaer as a doctoral student in 2007.


'/>"/>

Contact: Michael Mullaney
mullam@rpi.edu
518-276-6161
Rensselaer Polytechnic Institute
Source:Eurekalert  

Related biology news :

1. APS sets aside $50,000 to help students, post-docs, in wake of Hurricane Ike
2. New book dissects statistics for doctors and medical students
3. Collegiate Inventors Competition recognizes top student inventors
4. Following the leader can be a drag, according to students research on flapping flags
5. Students eat more whole grains when its gradually added to school lunch
6. New book helps medical students master clinical skills
7. College students find comfort in their pets during hard times
8. Web-based case studies help students develop career skills
9. High school students paper published in prestigious college math journal
10. At WPI, some students are learning its OK to peek
11. Iowa student engineers develop hand-held water sanitizer for a thirsty world
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
Student innovation at Rensselaer holds key to safer remote detection of dangerous materials
(Date:6/9/2016)... , June 9, 2016 ... Police deploy Teleste,s video security solution to ensure the safety ... France during the major tournament Teleste, ... communications systems and services, announced today that its video security ... to back up public safety across the country. ...
(Date:6/2/2016)... Perimeter Surveillance & Detection Systems, Biometrics & ... & Other Service  The latest report from ... of the global Border Security market . Visiongain ... billion in 2016. Now: In November 2015 ... and hardware technologies for advanced video surveillance. ...
(Date:5/12/2016)... WearablesResearch.com , a brand of Troubadour ... from the Q1 wave of its quarterly wearables survey. ... receptivity to a program where they would receive discounts ... company. "We were surprised to see that ... LaColla , CEO of Troubadour Research, "primarily because there ...
Breaking Biology News(10 mins):
(Date:6/23/2016)... ... June 23, 2016 , ... ClinCapture, the only free ... and will showcase its product’s latest features from June 26 to June 30, ... poster on Disrupting Clinical Trials in The Cloud during the conference. DIA ...
(Date:6/23/2016)... ... June 23, 2016 , ... Velocity Products, a ... designed, tuned and optimized exclusively for Okuma CNC machining centers at The International ... a collaboration among several companies with expertise in toolholding, cutting tools, machining dynamics ...
(Date:6/23/2016)... , June 23, 2016 ... market research report to its pharmaceuticals section with ... product details and much more. Complete ... across 151 pages, profiling 15 companies and supported ... at http://www.reportsnreports.com/reports/601420-global-cell-culture-media-industry-2016-market-research-report.html . The ...
(Date:6/22/2016)... DUBLIN , June 22, 2016 Research ... and Global Markets" report to their offering. ... $39.4 billion in 2014 from $29.3 billion in 2013. The market ... (CAGR) of 13.8% from 2015 to 2020, increasing from $50.6 billion ... and projected product forecasts during the forecast period (2015 to 2020) ...
Breaking Biology Technology: