Navigation Links
Small but speedy: Short plants live in the evolutionary fast lane
Date:5/21/2013

Durham, NC Biologists have known for a long time that some creatures evolve more quickly than others. Exactly why isn't well understood, particularly for plants. But it may be that height plays a role, says Robert Lanfear of Australian National University and the U. S. National Evolutionary Synthesis Center.

In a study to be published 21 May in the journal Nature Communications, Lanfear and colleagues report that shorter plants have faster-changing genomes.

Drawing from a database of global patterns in plant height for more than 20,000 species, the researchers estimated average maximum height for nearly 140 plant families worldwide ranging from a group of tropical plants called the Burmanniaceae, whose average height tops out at two inches (5 cm), to a family called the Tetramelaceae, which can tower above 140 feet (45 m).

For each family, the researchers also estimated how much their DNA sequences the strings of As, Cs, Ts and Gs that make up their genetic code changed over time.

When they plotted evolutionary rates against plant height, the researchers were surprised to find that shorter plants evolved as much as five times faster than taller ones.

The pattern held up for both the nuclear and the chloroplast genomes, even after the researchers accounted for factors shown in previous studies to correlate with evolutionary speed such as species richness, latitude, temperature, and levels of UV radiation. The results also held up when the researchers looked just within trees and shrubs, which are typically tall, or just herbs, which tend to be short.

What puts short plants in the evolutionary fast lane? The researchers suspect the difference may be driven by genetic changes that accumulate in the actively-dividing cells in the tip of the plant shoot as it grows. Cells don't copy their DNA perfectly each time they divide. In animals, most DNA copy mistakes that occur in the cells of the animal's body can't be inherited they're evolutionary dead ends. But this isn't the case for plants, where genetic changes in any part of the plant could potentially get passed on if those cells eventually form flowers or other reproductive organs

"Genetic changes that occur during cell division in plant shoots could potentially get passed on to future generations," Lanfear explained.

Importantly, growth slows as plants increase in size, he added. This means that over the long term, the rate of cell division and genome copying in taller plants eventually slows down, and changes in DNA the raw material for evolution accumulates less quickly.

"Our study also answers a question that was posed [in a paper] in Nature in 1986:" the researchers write. "Do plants evolve differently? The answer is 'yes.'"


'/>"/>

Contact: Robert Lanfear
rob.lanfear@anu.edu.au
National Evolutionary Synthesis Center (NESCent)
Source:Eurekalert

Related biology news :

1. A surprising new function for small RNAs in evolution
2. Goosefish capture small puffins over deep water of Northwest Atlantic
3. Notre Dame researcher is studying role small dams play in pollution control
4. How our cells cope with toxic small molecules
5. Developing microbial cell factories by employing synthetic small regulatory RNAs
6. EGFR mutation not prognostic factor in non-small cell lung cancer
7. Small Animal Regional Anesthesia and Analgesia
8. Small Animal Soft Tissue Surgery, (with DVD-ROM)
9. Small wasps to control a big pest?
10. Small changes in eating prompts weight loss
11. Small, portable sensors allow users to monitor exposure to pollution on their smart phones
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:5/20/2016)...  VoiceIt is excited to announce its new ... By working together, VoiceIt and VoicePass will offer ... take slightly different approaches to voice biometrics, collaboration ... usability. Both ... "This marketing and technology partnership allows ...
(Date:5/3/2016)...  Neurotechnology, a provider of high-precision biometric identification ... Identification System (ABIS) , a complete system for ... can process multiple complex biometric transactions with high ... face or iris biometrics. It leverages the core ... MegaMatcher Accelerator , which have been used in ...
(Date:4/26/2016)... , April 27, 2016 ... "Global Multi-modal Biometrics Market 2016-2020"  report to their ... , The analysts forecast the global ... of 15.49% during the period 2016-2020.  ... of sectors such as the healthcare, BFSI, transportation, ...
Breaking Biology News(10 mins):
(Date:6/27/2016)...  Liquid Biotech USA , ... Sponsored Research Agreement with The University of Pennsylvania ... cancer patients.  The funding will be used to ... clinical outcomes in cancer patients undergoing a variety ... employed to support the design of a therapeutic, ...
(Date:6/24/2016)... , June 24, 2016 Epic ... sensitively detects cancers susceptible to PARP inhibitors by ... tumor cells (CTCs). The new test has already ... therapeutics in multiple cancer types. Over ... DNA damage response pathways, including PARP, ATM, ATR, ...
(Date:6/23/2016)... WA (PRWEB) , ... June 23, 2016 , ... ... announces the release of its second eBook, “Clinical Trials Patient Recruitment and Retention ... recruitment and retention in this eBook by providing practical tips, tools, and strategies ...
(Date:6/23/2016)... June 23, 2016 /PRNewswire/ - FACIT has announced ... biotechnology company, Propellon Therapeutics Inc. ("Propellon" ... commercialization of a portfolio of first-in-class WDR5 inhibitors ... such as WDR5 represent an exciting class of ... precision medicine for cancer patients. Substantial advances have ...
Breaking Biology Technology: