Navigation Links
Simple model cell is key to understanding cell complexity
Date:5/15/2008

A team of Penn State researchers has developed a simple artificial cell with which to investigate the organization and function of two of the most basic cell components: the cell membrane and the cytoplasm--the gelatinous fluid that surrounds the structures in living cells. The work could lead to the creation of new drugs that take advantage of properties of cell organization to prevent the development of diseases. The team's findings will be published later this month (late May 2008) in the Journal of the American Chemical Society.

"Many scientists are trying to understand cells by turning off genes, one at a time, and are observing the effects on cell function, but we're doing the opposite," said Associate Professor of Chemistry Christine D. Keating, who led the research. "We're starting from scratch, adding in components to find out what is needed to simulate the most basic cell functions. Our goal is to find out how much complexity can be observed in very simple collections of molecules."

Building on previous work that was published in the 16 January 2008 issue of Journal of the American Chemical Society, Keating and her colleagues built a model cell using as the cytoplasm a solution of two different polymers: polyethyleneglycol (PEG) and dextran. The researchers encapsulated this polymer solution inside a cell membrane and, because the two polymers do not mix, one of the phases surrounded the other like the white of an egg around a yolk. The team then exposed the cell to a concentrated solution of sugar. Through a process known as osmosis--in which water diffuses across a cell membrane from a region of higher water concentration to a region of lower water concentration--water traveled from the relatively diluted polymer solution inside the cell to the more concentrated sugar solution outside the cell. As a result, the volume of the polymer solution inside the membrane was reduced.

With a cell membrane that was now too large and also unconstrained by its spherical shape, the cell converted to a budded form. A dextran-rich mixture filled the bud while a PEG-rich mixture remained inside the body of the cell. This new structure exhibited the type of complexity that the team had been looking for; it exhibited polarity. "Polarity is critical to development," said Keating. "It is an important first step in the development of a complex multi-cellular organism, like a human being, in which different cells perform different functions."

In previous work, the team created a membrane that was entirely uniform, but in their most recent paper, they describe an asymmetric membrane containing a mixture of lipid molecules. Some of these lipid molecules contained tiny pieces of PEG, which interacted with the PEG in the cytoplasm, thus generating polarity in the model cell. "Our work demonstrated the interrelationship of the cytoplasm and the cell membrane," said Keating.

The team's next step is to create a cascade in polarity. "By creating a model cytoplasm with different compositions, we demonstrated that we can control the behavior of cell membranes," said Keating. "Now we want to find out what will happen if, for example, we add an enzyme whose activity depends on the compositions of the cytoplasm and cell membrane."

Although Keating and her colleagues plan to continue adding components to their model cell, they don't expect to make a real cell. "We aren't trying to generate life here. Rather, we want to understand the physical principles that govern biological systems," said Keating. "For me the big picture is trying to understand how the staggering complexity observed in biological systems might have arisen from seemingly simple chemical and physical principles."


'/>"/>

Contact: Barbara K. Kennedy
science@psu.edu
814-863-4682
Penn State
Source:Eurekalert  

Related biology news :

1. Salt-tolerant gene found in simple plant nothing to sneeze at
2. Simple screening questionnaire for kidney disease outperforms current clinical practice guidelines
3. Simple recipe turns human skin cells into embryonic stem cell-like cells
4. Simple reason helps males evolve more quickly
5. Researchers develop simple method to create natural drug products
6. Gene regulation in humans is closer than expected to simple organisms
7. Safe water: simpler method for analyzing radium in water samples cuts testing time
8. Model successfully predicts large river system fish diversity
9. Climate modelers see modern echo in 30s Dust Bowl
10. A model photochemical compass for bird navigation
11. In computer models and observations, researchers see potential for significant red tide season
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
Simple model cell is key to understanding cell complexity
(Date:4/26/2016)... BANGALORE, India and LONDON ... Infosys Finacle, part of EdgeVerve Systems, a ... ), and Onegini today announced a partnership to ... banking solutions.      (Logo: http://photos.prnewswire.com/prnh/20151104/283829LOGO ... banks to provide their customers enhanced security to ...
(Date:4/15/2016)... Research and Markets has announced ... 2016-2020,"  report to their offering.  , ... global gait biometrics market is expected to grow ... 2016-2020. Gait analysis generates multiple variables ... to compute factors that are not or cannot ...
(Date:3/31/2016)... March 31, 2016  Genomics firm Nabsys has completed ... Barrett Bready , M.D., who returned to the ... original technical leadership team, including Chief Technology Officer, ... Development, Steve Nurnberg and Vice President of Software and ... company. Dr. Bready served as CEO of ...
Breaking Biology News(10 mins):
(Date:6/27/2016)... (PRWEB) , ... June 27, 2016 , ... ... to bring innovative medical technologies, services and solutions to the healthcare market. The ... implementation of various distribution, manufacturing, sales and marketing strategies that are necessary to ...
(Date:6/24/2016)... 24, 2016 Epic Sciences unveiled a ... susceptible to PARP inhibitors by targeting homologous recombination ... The new test has already been incorporated into ... cancer types. Over 230 clinical trials ... pathways, including PARP, ATM, ATR, DNA-PK and WEE-1. ...
(Date:6/23/2016)... 23, 2016   Boston Biomedical , an ... designed to target cancer stemness pathways, announced that ... Orphan Drug Designation from the U.S. Food and ... cancer, including gastroesophageal junction (GEJ) cancer. Napabucasin is ... inhibit cancer stemness pathways by targeting STAT3, and ...
(Date:6/23/2016)...  The Prostate Cancer Foundation (PCF) is pleased to announce 24 ... for prostate cancer. Members of the Class of 2016 were selected from a ... Read More About the Class of 2016 PCF Young Investigators ... ... ...
Breaking Biology Technology: