Navigation Links
Self-destructing bacteria improve renewable biofuel production

TEMPE, Ariz.- An Arizona State University research team has developed a process that removes a key obstacle to producing lower-cost, renewable biofuels. The team has programmed a photosynthetic microbe to self-destruct, making the recovery of high-energy fats--and their biofuel byproducts--easier and potentially less costly.

"The real costs involved in any biofuel production are harvesting the goodies and turning them into fuel," said Roy Curtiss, director of the Biodesign Institute's Center for Infectious Diseases and Vaccinology and professor in the School of Life Sciences. "This whole system that we have developed is a means to a green recovery of materials not requiring energy dependent physical or chemical processes."

Curtiss is part of a large, multidisciplinary ASU team that has been focusing on optimizing photosynthetic microbes, called cyanobacteria, as a source of renewable biofuels. These microbes are easy to genetically manipulate and have a potentially higher yield than any plant crops currently being used as transportation fuels.

But, until now, harvesting the fats from the microbes required many cost-intensive processing steps. Cyanobacteria have a multi-layer, burrito-like, protective set of outer membranes that help the bacteria thrive in even harsh surroundings, creating the pond scum often found in backyard swimming pools.

To get the cyanobacteria to more easily release their precious, high fat cargo, Curtiss and postdoctoral researcher Xinyao Liu, placed a suite of genes into photosynthetic bacteria that were controlled by the simple addition of trace amounts of nickel to the growth media.

"Genetics is a very powerful tool," said Liu. "We have created a very flexible system that we can finely control."

The genes were taken from a mortal bacterial enemy, called a bacteriaphage, which infect the bacteria, eventually killing the microbes by causing them to burst like a balloon. The scientists swapped parts from bacteriaphages that infect E. coli and salmonella, simply added nickel to the growth media, where the inserted genes produced enzymes that slowly dissolved the cyanobacteria membranes from within (see figure 1).

This is the first case of using this specialized bacterial system and placing it in cyanobacteria to cause them to self-destruct. "This system is probably one of a kind," said Curtiss, who has filed a patent with Xinyao Liu on the technology. Curtiss has been a pioneer in developing new vaccines, now working on similar systems to develop a safe and effective pneumonia vaccine.

The project is a prime example of the multidisciplinary, collaborative spirit of ASU research. Other key contributors were School of Life Sciences professor Wim Vermaas, an expert on the genetic manipulation techniques of cyanobacteria, Robert Roberson, for help with transmission electron microscopy, Daniel Brune, who did mass spectrometer analyses of the lipid products, and many other colleagues in the ASU biofuel project team.

The project has also been the beneficiary of the state of Arizona's recent strategic investments to spur new innovation that may help foster future green and local industries. The state's abundant year-round sunshine and warm temperatures are ideally suited for growing cyanobacteria.

"This probably would never have gone anywhere if Science Foundation Arizona or BP had not funded the project," said Curtiss. The $5 million in funding was key to scaling up and recruiting new talent to work on the project, including paper first author Xinyao Liu, an expert in microbiology and genetics who had recently earned his Ph.D. from the prestigious Peking University in Beijing, China.

"Xinyao is unique," said Curtiss. "If he were a baseball player, he wouldn't be satisfied with anything less than a 1000 home runs in 10 years. Xinyao is always swinging for the fences. Now, we are moving forward with a number of new approaches to see how far we can push the envelope." The next phase of the research is being funded by a two-year, $5.2 million grant from the U.S. Department of Energy (DOE) led by researcher Wim Vermaas, Curtiss, Liu and others from the ASU biofuel team.


Contact: Joe Caspermeyer
Arizona State University

Related biology news :

1. Shuttle brings space-grown strep bacteria back for study
2. The worlds oldest bacteria
3. Bacteria from sponges make new pharmaceuticals
4. Boston University biomedical engineers find chink in bacterias armor
5. University of Leicester scientists discover technique to help friendly bacteria
6. Spaceflight shown to alter ability of bacteria to cause disease
7. A tiny pinch from a z-ring helps bacteria cells divide
8. Legionnaires bacterial proteins work together to survive
9. Scripps research team blocks bacterial communication system to prevent deadly staph infections
10. NSF awards Stevens team $1 million for research on smart, bacteria-repellent nanohydrogels
11. Chemical compound present in detergents produce bacteria alterations in agricultural soils
Post Your Comments:
(Date:10/29/2015)... Today, LifeBEAM , a leader ... a global leader in technical performance sports clothing ... advanced bio-sensing technology. The hat will allow fitness ... biometrics to improve overall training performance. As a ... bring together the most advanced technology, extensive understanding ...
(Date:10/27/2015)... 27, 2015 Munich, Germany ... Mapping technology (ASGM) automatically maps data from mobile eye ... , so that they can be quantitatively analyzed ... Munich, Germany , October 28-29, 2015. SMI,s ... from mobile eye tracking videos created with SMI,s ...
(Date:10/26/2015)... , October 26, 2015 ... --> adds Biometrics Market ... 2021 as well as Emerging Biometrics ... reports to its collection of IT ... . --> ...
Breaking Biology News(10 mins):
(Date:11/24/2015)... Israel , Nov. 24, 2015  Tikcro Technologies Ltd. (OTCQB: TIKRF) ... on December 29, 2015 at 11:00 a.m. Israel ... Electra Tower, 98 Yigal Allon Street, 36 th Floor, ... of Eric Paneth and Izhak Tamir to the ... Rami Skaliter as external directors; , approval of an amendment to ...
(Date:11/24/2015)... , Nov. 24, 2015  Twist Bioscience, ... that Emily Leproust, Ph.D., Twist Bioscience chief executive ... Healthcare Conference on December 1, 2015 at 3:10 ... in New York City. --> ... . Twist Bioscience is on Twitter. Sign ...
(Date:11/24/2015)... ... , ... InSphero AG, the leading supplier of easy-to-use solutions for production, culture, ... serve as Chief Operating Officer. , Having joined InSphero in November 2013 ... was promoted to Head of InSphero Diagnostics in 2014. There she has built ...
(Date:11/24/2015)... Nov. 24, 2015 /CNW Telbec/ - ProMetic Life Sciences Inc. ... that Mr. Pierre Laurin , President and Chief Executive ... the upcoming Piper Jaffray 27 th Annual Healthcare Conference ... December 1-2, 2015. st , at 8.50am ... meetings throughout the day. The presentation will be available live ...
Breaking Biology Technology: