Navigation Links
Scripps Research scientists reveal key mechanism governing nicotine addiction
Date:1/30/2011

JUPITER, FL January 25, 2011 Embargoed by the journal Nature until January 30, 1 PM Eastern time Scientists from the Florida campus of The Scripps Research Institute have identified a pathway in the brain that regulates an individual's vulnerability to the addictive properties of nicotine. The findings suggest a new target for anti-smoking therapies.

The study appeared January 30, 2011, in an advance, online issue of the journal Nature.

In the study, the scientists examined the effects of a part of a receptor (a protein molecule to which specific signaling molecules attach) that responds to nicotine in the brain. The scientists found that animal models with a genetic mutation inhibiting this receptor subunit consumed far more nicotine than normal. This effect could be reversed by boosting the subunit's expression.

"We believe that these new data establish a new framework for understanding the motivational drives in nicotine consumption and also the brain pathways that regulate vulnerability to tobacco addiction," said Scripps Research Associate Professor Paul Kenny, who led the study. "These findings also point to a promising target for the development of potential anti-smoking therapies."

Specifically, the new study focused on the nicotinic receptor subunit α5, in a discrete pathway of the brain called the habenulo-interpeduncular tract. The new findings suggest that nicotine activates nicotinic receptors containing this subunit in the habenula, triggering a response that acts to dampen the urge to consume more of the drug.

"It was unexpected that the habenula, and brain structures into which it projects, play such a profound role in controlling the desire to consume nicotine," said Christie Fowler, the first author of the study and research associate in the Kenny laboratory. "The habenula appears to be activated by nicotine when consumption of the drug has reached an adverse level. But if the pathway isn't functioning properly, you simply take more. Our data may explain recent human data showing that individuals with genetic variation in the α5 nicotinic receptor subunit are far more vulnerable to the addictive properties of nicotine, and far more likely to develop smoking-associated diseases such as lung cancer and chronic obstructive pulmonary disease."

A Previously Unknown Pathway Inhibits Motivation

Tobacco smoking is one of the leading causes of death worldwide, with more than five million people dying each year as a result of it, according to statistics cited in the study. Smoking is considered the cause of more than 90 percent of lung cancer deaths. Scientists have established that a tendency towards smoking can be inherited more than 60 percent of the risk of becoming addicted to nicotine can be laid at the door of genetic factors.

Nicotine is the major addictive component of tobacco smoke, and nicotine acts in the brain by stimulating proteins called nicotinic acetylcholine receptors (nAChRs). These nAChRs are made up of different types of subunits, one of which is the α5 subunitthe focus of the new study.

In their experiments, the Scripps Research scientists set out to determine the role of nAChRs-containing α5 subunits (α5* nAChRs) in regulating nicotine consumption.

First, the team assessed the addictive properties of nicotine in genetically altered mice lacking α5* nAChRs. The results showed that when these "knockout" mice were given access to high doses of nicotine, they consumed much larger quantities than normal mice. Next, to determine if the subunit was responsible for the sudden shift in appetite for nicotine, the scientists used a virus that "rescued" the expression of α5* nAChRs only in the medial habenula and areas of the brain into which it projects. The results showed the nicotine consumption patterns of the knockout mice returned to a normal range.

The scientists repeated the experiments with rats and produced similar results. In this case, the scientists used a virus to "knock out" α5 nAChR subunits in the medial habenula. When the α5* nAChRs were decreased, the animals were more aggressive in seeking higher doses of nicotine. When the subunit remained unaltered, the animals showed more restraint.

The scientists then worked out the biochemical mechanisms through which α5* nAChRs operate in the medial habenula to control the addictive properties of nicotine. They found that α5* nAChRs regulate just how responsive the habenula is to nicotine, and that the habenula is involved in some of the negative responses to nicotine consumption. So when α5* nAChRs do not function properly, the habenula is less responsive to nicotine and much more of the drug can be consumed without negative feedback from the brain.

The scientists are optimistic that their findings may one day lead to help for smokers who want to kick the habit. Based on the new findings, the Scripps Florida scientists have started a new program of research in collaboration with scientists at the University of Pennsylvania to develop new drugs to boost α5* nAChR signaling and decrease the addictive properties of nicotine.


'/>"/>

Contact: Mika Ono
mikaono@scripps.edu
858-784-2052
Scripps Research Institute
Source:Eurekalert

Related biology news :

1. Scripps Research team creates new synthetic compound with HIV-fighting promise
2. Scripps Research and Vanderbilt to launch joint institute
3. Scripps Research chemist devises new method to quantify protein changes
4. Scripps Research scientists identify key interaction in hepatitis C virus
5. Scripps Research scientist uncovers switch controlling protein production
6. Scripps Research scientists show prions mutate and adapt to host environment
7. Scripps scientists see the light in bizarre bioluminescent snail
8. Scripps Research scientists redefine the role of plasma cells in the immune system
9. Judy and J. John Goodman give $50,000 gift to Scripps Florida
10. New Scripps Florida scientist awarded pair of unconventional grants
11. Scripps Research scientists identify new mechanism regulating daily biological rhythms
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:4/13/2017)... According to a new market research report "Consumer IAM Market by ... Service, Authentication Type, Deployment Mode, Vertical, and Region - Global Forecast to ... USD 14.30 Billion in 2017 to USD 31.75 Billion by 2022, at ... ... MarketsandMarkets Logo ...
(Date:4/11/2017)... , April 11, 2017 NXT-ID, Inc. ... technology company, announces the appointment of independent Directors Mr. ... to its Board of Directors, furthering the company,s corporate governance ... Gino ... we look forward to their guidance and benefiting from their ...
(Date:4/5/2017)... April 4, 2017 KEY FINDINGS ... expand at a CAGR of 25.76% during the forecast ... the primary factor for the growth of the stem ... https://www.reportbuyer.com/product/4807905/ MARKET INSIGHTS The global stem cell ... application, and geography. The stem cell market of the ...
Breaking Biology News(10 mins):
(Date:10/9/2017)... 9, 2017  BioTech Holdings announced today identification ... its ProCell stem cell therapy prevents limb loss ... Company, demonstrated that treatment with ProCell resulted in ... as compared to standard bone marrow stem cell ... in reduction of therapeutic effect.  ...
(Date:10/9/2017)... ... October 09, 2017 , ... The Giving Tree Wellness ... targeting the needs of consumers who are incorporating medical marijuana into their wellness ... Arizona. , As operators of two successful Valley dispensaries, The Giving Tree’s two ...
(Date:10/7/2017)... ... October 06, 2017 , ... ... Hi-C metagenome deconvolution product, featuring the first commercially available Hi-C kit. Researchers ... perform Hi-C metagenome deconvolution using their own facilities, supplementing the company’s full-service ...
(Date:10/6/2017)... ... October 06, 2017 , ... ... discussion and webinar on INSIGhT, the first-ever adaptive clinical trial for glioblastoma (GBM). ... Institute. The event is free and open to the public, but registration is ...
Breaking Biology Technology: