Navigation Links
Scientists uncover previously unknown mechanism of memory formation

JUPITER, FL, January 30, 2013 It takes a lot to make a memory. New proteins have to be synthesized, neuron structures altered. While some of these memory-building mechanisms are known, many are not. Some recent studies have indicated that a unique group of molecules called microRNAs, known to control production of proteins in cells, may play a far more important role in memory formation than previously thought.

Now, a new study by scientists on the Florida campus of The Scripps Research Institute has for the first time confirmed a critical role for microRNAs in the development of memory in the part of the brain called the amygdala, which is involved in emotional memory. The new study found that a specific microRNAmiR-182was deeply involved in memory formation within this brain structure.

"No one had looked at the role of microRNAs in amygdala memory," said Courtney Miller, a TSRI assistant professor who led the study. "And it looks as though miR-182 may be promoting local protein synthesis, helping to support the synapse-specificity of memories."

In the new study, published in the Journal of Neuroscience, the scientists measured the levels of all known microRNAs following an animal model of learning. A microarray analysis, which enables rapid genetic testing on a large scale, showed that more than half of all known microRNAs are expressed in the amygdala. Seven of those microRNAs increased and 32 decreased when learning occurred.

The study found that, of the microRNAs expressed in the brain, miR-182 had one of the lowest levels and these decreased further with learning. Despite these very low levels, its overexpression prevented the formation of memory and led to a decrease in proteins that regulate neuronal plasticity (neurons' ability to adapt) through changes in structure.

These findings suggest that learning-induced suppression of miR-182 is a main supporting factor in the formation of long-term memory in the amagdala, as well as an underappreciated mechanism for regulating protein synthesis during memory consolidation, Miller said.

Further analysis identified miR-182 as a repressor of proteins that control actina major component of the cytoskeleton, the scaffolding that holds cells together.

"We know that memory formation requires changes in dendritic spines on the neurons through regulation of the actin cytoskeleton," Miller said. "When miR-182 is suppressed through learning it halts, at least in part, repression of actin-regulating proteins, so there's a good chance that miR-182 exerts important control over the actin cytoskeleton."

Miller is now interested in whether or not high levels of miR-182 accumulate in the aging brain, something that would help to explain a tendency toward memory loss in the elderly. She also notes that other research has shown that animal models lacking miR-182 had no significant physical or cellular abnormalities, suggesting that miR-182 could be a viable target for drug discovery.

Contact: Eric Sauter
Scripps Research Institute

Related biology news :

1. Stanford scientists develop gene therapy approach to grow blood vessels in ischemic limbs
2. Queens scientists seek vaccine for Pseudomonas infection
3. Scientists produce eye structures from human blood-derived stem cells
4. American Society of Plant Biologists honors early career women scientists
5. Brandeis scientists win prestigious prize for circadian rhythms research
6. Scientists discover new method of proton transfer
7. Salk scientists open new window into how cancers override cellular growth controls
8. - Now Featuring Bespoke Pages for China’s Life Scientists
9. Scientists win $2 million to study new pathway in development and maintenance of lymphoma
10. UGA scientists reveal genetic mutation depicted in van Goghs sunflower paintings
11. Genetic mutation depicted in van Goghs sunflower paintings revealed by scientists
Post Your Comments:
Related Image:
Scientists uncover previously unknown mechanism of memory formation
(Date:4/15/2016)... CHICAGO , April 15, 2016  A ... companies make more accurate underwriting decisions in a ... offering timely, competitively priced and high-value life insurance ... health screenings. With Force Diagnostics, rapid ... and lifestyle data readings (blood pressure, weight, pulse, ...
(Date:3/31/2016)... , March 31, 2016   ... ("LegacyXChange" or the "Company") LegacyXChange is excited ... of its soon to be launched online site for ... ) will also provide potential shareholders a ... DNA technology to an industry that is notorious for ...
(Date:3/22/2016)... PUNE, India , March 22, 2016 ... new market research report "Electronic Sensors Market for ... Fingerprint, Proximity, & Others), Application (Communication & ... and Geography - Global Forecast to 2022", ... consumer industry is expected to reach USD ...
Breaking Biology News(10 mins):
(Date:6/27/2016)... 27, 2016 /PRNewswire/ - BIOREM Inc. (TSX-V: BRM) ("Biorem" or ... its major shareholders, Clean Technology Fund I, LP and ... based venture capital funds which together hold ... a fully diluted, as converted basis), that they have ... entire equity holdings in Biorem to TUS Holdings Co. ...
(Date:6/27/2016)... (PRWEB) , ... June 27, 2016 , ... Parallel ... clinical trials, announced today the Clinical Reach Virtual Patient Encounter CONSULT module ... circle with the physician and clinical trial team. , Using the CONSULT module, patients ...
(Date:6/27/2016)...  Liquid Biotech USA , ... Sponsored Research Agreement with The University of Pennsylvania ... cancer patients.  The funding will be used to ... clinical outcomes in cancer patients undergoing a variety ... employed to support the design of a therapeutic, ...
(Date:6/24/2016)... 24, 2016 Epic Sciences unveiled a ... susceptible to PARP inhibitors by targeting homologous recombination ... The new test has already been incorporated into ... cancer types. Over 230 clinical trials ... pathways, including PARP, ATM, ATR, DNA-PK and WEE-1. ...
Breaking Biology Technology: