Navigation Links
Scientists 'reprogram' mouse fat cells into clinically useful stem cells
Date:7/26/2010

Tampa, Fla. (July 26, 2010) Australian scientists from the Monash Institute of Medical Research have "reprogrammed" adult mouse fat cells and neural cells to become stem cells that can differentiate into a variety of different cells (pluripotency). The cells, called "induced pluripotent stem cells" (iPS), are nearly identical to the naturally occurring pluripotent stems cells, such as embryonic stem cells, which are highly pluripotent, in short supply and their access restricted in the U.S.

The study is published in issue 19(5) of Cell Transplantation and is now freely available on-line at http://www.ingentaconnect.com/content/cog/ct/ .

"Induced pluripotent stem cells have revolutionized cell reprogramming," said the study's lead author, Dr. Paul J. Verma. "One challenge is to find the most appropriate cell for reprogramming. Our study demonstrated that both neural stem cells (NSCs) and adipose tissue-derived cells (ADCs) from adult mice expressed genetic pluripotency and could differentiate into the three germ layers, endoderm, mesoderm and ectoderm. The ADCs were the most amenable to reprogramming."

According to Dr. Verma, iPS cells have been shown to have many of the hallmarks of embryonic stem cells. Choosing which cells were best for reprogramming required looking at the ease of access and ease of derivation and growth of the cells in vitro. They concluded that it was likely that certain iPS cell lines will have a "higher propensity to differentiate into certain lineages (cell types)."

"This variation may be related to different levels of programming achieved," added Dr. Verma. "Many different cell types need to be investigated to generate many iPS lines for specific differentiation and different research purposes."

The research team concluded that ADCs represent a more clinically relevant cell type and that fat tissue can be easily accessed and grown easily and rapidly in cultures. Fat tissue cells, when reprogrammed, can also be prolific. The authors cited a study previously published in Cell Transplantation (16:9) suggesting that 100 ml of human fat tissue could yield one million clinically useful stem cells.

Their work takes the development of iPS cells a step closer toward their eventual clinical use in treating human diseases.

"There is considerable potential in the generation of iPS cells for the treatment of a number of disorders" said Dr. Paul Sanberg, coeditor-in-chief and Director of the Center Of Excellence for Aging and Brain Repair at the University of South Florida. "Finding the optimal source of cells to start with, is of paramount importance and this study provides reassuring data on a highly favorable source".


'/>"/>

Contact: David Eve
celltransplantation@gmail.com
Cell Transplantation Center of Excellence for Aging and Brain Repair
Source:Eurekalert

Related biology news :

1. Jefferson scientists deliver toxic genes to effectively kill pancreatic cancer cells
2. Scientists identify novel inhibitor of human microRNA
3. Argonne scientists peer into heart of compound that may detect chemical, biological weapons
4. MU scientists go green with gold, distribute environmentally friendly nanoparticles
5. Scientists identify gene that may contribute to improved rice yield
6. Scientists discover why a mothers high-fat diet contributes to obesity in her children
7. MU scientists see how HIV matures into an infection
8. Earth scientists keep an eye on Texas
9. Thinking it through: Scientists call for policy to guide biofuels industry toward sustainability
10. Scientists identify a molecule that coordinates the movement of cells
11. Scientists Find new migratory patterns for Mediterranean and Western Atlantic bluefin tuna
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:4/3/2017)... April 3, 2017  Data captured by ... platform, detected a statistically significant association between ... to treatment and objective response of cancer ... to predict whether cancer patients will respond ... as well as to improve both pre-infusion potency ...
(Date:3/30/2017)... KONG , March 30, 2017 The ... a system for three-dimensional (3D) fingerprint identification by adopting ground breaking ... into a new realm of speed and accuracy for use in ... at an affordable cost. ... ...
(Date:3/29/2017)... , March 29, 2017  higi, the health ... in North America , today announced ... and the acquisition of EveryMove. The new investment and ... set of tools to transform population health activities through ... lifestyle data. higi collects and secures data ...
Breaking Biology News(10 mins):
(Date:10/11/2017)... , ... October 11, 2017 , ... Disappearing forests and ... lives of over 5.5 million people each year. Especially those living in larger cities ... Treepex - based in one of the most pollution-affected countries globally - decided to ...
(Date:10/10/2017)... ... October 10, 2017 , ... ... company advancing targeted antibody-drug conjugate (ADC) therapeutics, today confirmed licensing rights that ... Polymerized Liposomal Nanoparticle), a technology developed in collaboration with Children’s Hospital Los ...
(Date:10/10/2017)... , Oct. 10, 2017 SomaGenics announced ... the NIH to develop RealSeq®-SC (Single Cell), expected to ... profiling small RNAs (including microRNAs) from single cells using ... highlights the need to accelerate development of approaches to ... "New techniques for measuring levels of ...
(Date:10/9/2017)... (PRWEB) , ... October 09, 2017 , ... The award-winning ... to broadcast first quarter 2018. American Farmer airs Tuesdays at 8:30aET on RFD-TV. ... is faced with the challenge of how to continue to feed a growing nation. ...
Breaking Biology Technology: