Navigation Links
Scientists create 3-D models of whole mouse organs

New Haven, Conn.Yale University engineers have for the first time created 3D models of whole intact mouse organs, a feat they accomplished using fluorescence microscopy. The team reports its findings in the May/June issue of the Journal of Biomedical Optics, in a study published online this week.

Combining an imaging technique called multiphoton microscopy with "optical clearing," which uses a solution that renders tissue transparent, the researchers were able to scan mouse organs and create high-resolution images of the brain, small intestine, large intestine, kidney, lung and testicles. They then created 3D models of the complete organsa feat that, until now, was only possible by slicing the organs into thin sections or destroying them in the process, a disadvantage if more information about the sample is needed after the fact.

With traditional microscopy, researchers are only able to image tissues up to depths on the order of 300 microns, or about three times the thickness of a human hair. In that process, tissue samples are cut into thin slices, stained with dyes to highlight different structures and cell types, individually imaged, then stacked back together to create 3D models. The Yale team, by contrast, was able to avoid slicing or staining the organs by relying on natural fluorescence generated from the tissue itself.

When combined with optical clearing, multiphoton microscopyso called because it uses photons to excite naturally fluorescent cells within the tissuecan image a larger field-of-view at much greater depths and is limited only by the size of the lens used. Once the tissue is cleared using a standard solution that makes it virtually transparent to optical light, the researchers shine different wavelengths of light on it to excite the inherently fluorescent tissue. The fluorescence is displayed as different colors that highlight the different structures and tissue types (in the lung, for example, collagen is depicted as green while elastin shows up as red).

"The intrinsic fluorescence is just as effective as conventional staining techniques," said Michael Levene, associate professor at the Yale School of Engineering & Applied Science and the team leader. "It's like creating a virtual 3D biopsy that can be manipulated at will. And you have the added benefit that the tissue remains intact even after it's been imaged."

The Yale team was able to reach depths in excess of two millimetersdeep enough to image complete mouse organs. Typical tissue samples taken during patient biopsies are about this size as well, meaning the new technique could be used to create 3D models of biopsies, Levene said. This could be especially useful in tissues where the direction of a cancerous growth may make it difficult to know how to slice tissue sample, he noted.

In addition, the technology could eventually be used to trace fluorescent proteins in the mouse brain and see where different genes are expressed, or to trace where drugs travel in the body using fluorescent tagging, for example.

"Fluorescence microscopy plays such a key role throughout biology and medicine," Leven said. "The range of applications of this technique is immense, including everything from improved evaluation of patient tissue biopsies to fundamental studies of how the brain is wired."


Contact: Suzanne Taylor Muzzin
Yale University

Related biology news :

1. UK scientists working to help cut ID theft
2. Scientists show that mitochondrial DNA variants are linked to risk factors for type 2 diabetes
3. Comet probes reveal evidence of origin of life, scientists claim
4. Scientists link fragile X tremor/ataxia syndrome to binding protein in RNA
5. Male elephants get photo IDs from scientists
6. Scientists retrace evolution with first atomic structure of an ancient protein
7. Muscle mass: Scientists identify novel mode of transcriptional regulation during myogenesis
8. Carnegie Mellon scientists develop nanogels that enable controlled delivery of carbohydrate drugs
9. Clemson scientists shed light on molecules in living cells
10. Scientists tackle mystery mountain illness
11. T. rex quicker than Becks, say scientists
Post Your Comments:
Related Image:
Scientists create 3-D models of whole mouse organs
(Date:11/9/2015)... 09, 2015 ... the "Global Law Enforcement Biometrics Market ... --> ) has announced the ... Biometrics Market 2015-2019" report to their ... ( ) has announced the addition ...
(Date:10/29/2015)... , Oct. 29, 2015  The J. Craig ... report titled, "DNA Synthesis and Biosecurity: Lessons Learned and ... Department of Health and Human Services guidance for synthetic ... 2010. --> --> ... also has the potential to pose unique biosecurity threats. ...
(Date:10/29/2015)... , Oct. 29, 2015 Today, ... announced a partnership with 2XU, a global leader ... deliver a smart hat with advanced bio-sensing technology. ... other athletes to monitor key biometrics to improve ... strategic partnership, the two companies will bring together the ...
Breaking Biology News(10 mins):
(Date:12/1/2015)... ... December 01, 2015 , ... RURO, Inc., a leading LIMS, ... animal colony management software solution, ezColony®, is now available as a subscription-based, cloud-hosted ... , Many organizations are moving to cloud-hosting for LIMS and ...
(Date:12/1/2015)... ... December 01, 2015 , ... The American Society of Gynecologic ... Kyle Mathews will join fellow surgeons in the shared pursuit of ÔÇťadvancing ... experienced urogynecologist, founder of Plano Urogynecology Associates and Fellow of the American ...
(Date:11/30/2015)... ... November 30, 2015 , ... ... new, Good Manufacturing Practice (GMP) 10000 in the Santiago Marriott. The Global Stem ... is operated by a world-class team of qualified medical researchers and practitioners, experienced ...
(Date:11/30/2015)... ALBANY, N.Y. , Nov. 30, 2015 /PRNewswire-USNewswire/ ... led by assistant chemistry professor Jan Halámek, is ... level.   --> ...   --> ... researchers at UAlbany have discovered a straightforward concept ...
Breaking Biology Technology: