Navigation Links
Sardines and horse mackerel identified using forensic techniques
Date:5/24/2011

A team of researchers from Galicia in Spain have used forensic mitochondrial DNA species identification techniques to distinguish between sardines and horse mackerel. This method makes it possible to genetically differentiate between the fish, even if they are canned or processed, which makes it easier to monitor the degree to which fisheries resources are being exploited.

DNA from the mitochondria cell organelles is ideal for distinguishing between species. One of its components in particular, cytochrome b, is a genetic marker that scientists use to establish relationships between genera and families, and is also used by some forensic laboratories to identify animals that appear at crime scenes (cats or insects, for example).

Now, for the first time, researchers from the National Association of Manufacturers of Canned Fish and Shellfish (ANFACO-CECOPESCA, Spain) have used this technique in order to genetically identify small pelagic (non-coastal) species, such as sardines and horse mackerel. This study was supported by the European Fisheries Fund (EFF) and Spain's Ministry of the Environment and Rural and Marine Affairs (MARM).

"These molecular tools represent a great step forward for the sector, since they enable fisheries imports to be monitored and tracked, and also ensure they are correctly labelled", Montserrat Espieira, a biologist for ANFACO-CECOPESCA and lead researcher of the study, tells SINC.

By using this method, the team was able to identify more than 20 species from the sardine group (genera such as Sardina, Sardinella, Clupea, Ophistonoma and Ilisha) and a similar number of horse mackerel species (Trachurus, Caranx, Mullus, Rastrelliger and others), originating from seas all over the world.

The methodology involved gathering a sample of mitochondrial DNA from the fish (even if it was canned or processed), amplifying a fragment of cytochrome b (using a polymerase chain reaction PCR) and, lastly, carrying out a phylogenetic analysis by obtaining a "forensically informative nucleotide sequencing" (FINS).

The research on the sardines was published this month in the journal European Food Research and Technology, while the one on the horse mackerel was issued in March in the Journal of Agricultural and Food Chemistry.

The researchers are now focusing on analysing the distinct organoleptic, microbiological, physical-chemical and nutritional properties of the species analysed, and are also looking into whether some currently unexploited species could be of interest from a consumer perspective. "The end goal is to improve the management of fisheries resources and ensure they are sustainably exploited", explains Espieira.

The team is also developing rapid molecular identification methodologies (based on the Real Time-PCR technique), which will make it possible to distinguish between the most commercially-valuable small pelagic fish species the European anchovy (Engraulis encrasicolus), the European sardine (Sardina pilchardus) and the main species of horse mackerel (Trachurus trachurus) simply and in less than three hours.


'/>"/>

Contact: SINC
info@plataformasinc.es
34-914-251-820
FECYT - Spanish Foundation for Science and Technology
Source:Eurekalert

Related biology news :

1. Horse blind date could lead to loss of foal
2. Canadian researchers first worldwide to generate pluripotent stem cells from horses
3. Sleeping Trojan horse to aid imaging of diseased cells
4. Trojan Horse ploy to sneak protective drug into brains of stroke patients
5. Climate change affects horseshoe crab numbers
6. Training the trainers: How to minimize stress when horses are first ridden
7. Would a molecular horse trot, pace or glide across a surface?
8. Climate change implicated in decline of horseshoe crabs
9. Trojan Horse attack on native lupine
10. Research develops simple recipe for fungus-free horseradish
11. Mutant gene link to West Nile virus in horses
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:3/20/2017)... , March 20, 2017 PMD Healthcare ... personal spirometer and Wellness Management System (WMS), a remote, ... Founded in 2010, PMD Healthcare is a Medical Device, ... a mission dedicated to creating innovative solutions that empower ... With that intent focus, PMD developed the first ever ...
(Date:3/13/2017)... , March 13, 2017 Future of security: Biometric ... ... DERMALOGs Face Matching enables to match face pictures ... the basis to identify individuals. (PRNewsFoto/Dermalog Identification Systems) ... DERMALOG,s "Face Matching" is the fastest software for biometric Face ...
(Date:3/9/2017)... FRANCISCO and MOUNTAIN VIEW, Calif. ... , "Eating Well Made Simple," and 23andMe , ... help guide better food choices.  Zipongo can now provide ... their food preferences, health goals and biometrics, but also ... certain food choices. Zipongo,s personalized food decision ...
Breaking Biology News(10 mins):
(Date:4/27/2017)...  Pendant Biosciences, Inc. (formerly Nanoferix, Inc.), a privately-held ... delivery technologies, today announced that it has been accepted ... Toronto . Shawn Glinter , ... "We are excited to become part of the JLABS ... honored to be the first Tennessee ...
(Date:4/26/2017)... ... April 26, 2017 , ... WonderWorks, Myrtle Beach’s science focused ... future of deep space exploration and inspire space enthusiasts. The exhibit features interactive ... a guest appearance by former Shuttle Astronaut Don Thomas. , The intergalactic weekend ...
(Date:4/26/2017)... Maryland (PRWEB) , ... April 26, 2017 , ... ... will be demonstrating its new Bioflash MailGuardtm mail security screening solution at the ... The Bioflash MailGuard system provides a fast, highly accurate, easy to use ...
(Date:4/26/2017)... HATFIELD, Pa. , April 26, 2017 /PRNewswire/ ... drug delivery platform, has signed a collaborative and ... through Dr. Silvia Muro . The overall ... pharmacokinetics and pharmacodynamics of various 3DNA designs and ... aims involve targeting diseases of the vasculature as ...
Breaking Biology Technology: