Navigation Links
Salmonella stays deadly with a 'beta' version of cell behavior

COLUMBUS, Ohio Salmonella cells have hijacked the protein-building process to maintain their ability to cause illness, new research suggests.

Scientists say that these bacteria have modified what has long been considered typical cell behavior by using a beta form of an amino acid as opposed to an alpha form during the act of making proteins.

Beta versions of amino acids occur in nature under rare and specific circumstances, but have never been observed as part of protein synthesis. Before this finding, in fact, researchers had determined that virtually all proteins were constructed with the alpha forms of amino acids.

This work has shown that when researchers delete any one of three genes from the process that makes use of the beta form of the amino acid, or if they insert the alpha form in the beta version's place, Salmonella cells are no longer able to cause disease. The amino acid in question is lysine, one of 22 genetically encoded amino acids that are strung together in cells to make proteins.

"When these genes were knocked out, the cells became sensitive to antibiotics. And if we put beta lysine into the medium where cells were growing, they became resistant to antibiotics," said Michael Ibba, professor of microbiology at Ohio State University and a senior author of the study. "So we could see the beta amino acid being taken up and used. The cells really do need the beta amino acid to be resistant to antibiotics, and for other aspects of their virulence."

This finding suggests that the process using this specific beta amino acid could be an attractive antibiotic target for this common pathogen, the researchers say.

The Centers for Disease Control and Prevention estimates that about 1.4 million people in the United States are infected with Salmonella each year, though only 40,000 cases are reported. Most people infected with Salmonella develop diarrhea, fever and abdominal cramps. Though recovery can occur within a week without treatment, some severe cases require antibiotic treatment and hospitalization.

The study is published in the Aug. 14 online edition of the journal Nature Chemical Biology.

This work began when University of Toronto scientists exploring the origins of Salmonella's virulence identified three genes that were clear players in the process. These three genes called YjeK, PoxA and EF-P were unusual in this context.

Genes that confer virulence in bacteria typically have a specific job, such as producing toxins or transporters. But these three virulence genes all looked like they should have a role in the protein synthesis machinery which is Ibba's expertise.

Under normal circumstances in cells, an enzyme will select amino acids in the cell and place them on a molecule called transfer RNA, or tRNA, which leads to translation of the genetic code into proteins.

In Salmonella cells, these steps are similar, but with a few surprising twists, Ibba said. He and colleagues confirmed that the YjeK gene makes beta lysine, and showed that the PoxA gene takes that beta lysine and attaches it to EF-P a protein that partially mimics the shape and function of tRNA.

"It's a really unexpected pathway," said Ibba, also an investigator in Ohio State's Center for RNA Biology. "It is a mimic of what normally makes protein in a cell. Where a cell would normally be expected to use an alpha amino acid, Salmonella puts on a beta amino acid. And it ends up making molecules that lead to the cells being virulent."

The research team first reconstructed this unusual protein synthesis process in test tube experiments, and then followed with studies in cell cultures. Even before they took on studying the mechanism, however, they knew that the effects of these virulence genes were powerful: In earlier animal studies, deleting any one of the three genes and then infecting mice with these altered Salmonella cellshad no effect on the animals. When the genes were left intact and cells were injected into mice, the resulting Salmonella infection killed the animals.

In addition, when the researchers tricked Salmonella cells into using alpha lysine for this pathway instead of beta lysine, the cells lost their ability to cause illness.

"This tells us the cell is not going to be able to easily replace the beta amino acid," Ibba said. "It is essential for virulence in Salmonella."

And that, he said, is why that amino acid might be such an effective drug target, especially as humans don't seem to make beta amino acids at all. "You have to make an antibiotic look like something natural, only different. If you have something that's already different like a beta amino acid, you've potentially got a much better drug target because it involves chemistry that's comparatively rare in the cell. It's harder for the cell to try to alter its own chemistry to develop resistance," Ibba said.

From here, the researchers are observing cell behavior later in the protein-building process to figure out how this hijacked system actually gives Salmonella its virulence.


Contact: Michael Ibba
Ohio State University

Related biology news :

1. The medium is the message: Manipulating salmonella in spaceflight curtails infectiousness
2. Yale researchers uncover secrets of salmonellas stealth attack
3. Hygienic Lab at U. Iowa first to confirm salmonella in nationwide outbreak
4. Probiotic without effect against Salmonella
5. Faster Salmonella detection now possible with new technique
6. Mechanism uncovered behind Salmonella virulence and drug susceptibility
7. MU scientist develops salmonella test that makes food safer, reduce recalls
8. Zooming in on the weapons of Salmonella
9. Salmonella utilize multiple modes of infection
10. Bacterium Salmonella enterica regulates virulence according to iron levels found in its surroundings
11. New target found for nitric oxides attack on salmonella bacteria
Post Your Comments:
(Date:11/17/2015)... , Nov. 17, 2015 Pressure BioSciences, Inc. ... the development and sale of broadly enabling, pressure cycling ... sciences industry, today announced it has received gross proceeds ... million Private Placement (the "Offering"), increasing the total amount ... or more additional closings are expected in the near ...
(Date:11/12/2015)...   Growing need for low-cost, easy to ... paving the way for use of biochemical sensors ... in clinical, agricultural, environmental, food and defense applications. ... medical applications, however, their adoption is increasing in ... emphasis on improving product quality and growing need ...
(Date:11/9/2015)... ) ... "Global Law Enforcement Biometrics Market 2015-2019" ... ) has announced the addition of ... 2015-2019" report to their offering. ... ) has announced the addition of the ...
Breaking Biology News(10 mins):
(Date:11/24/2015)... 2015 /CNW/ - iCo Therapeutics ("iCo" or "the Company") ... for the quarter ended September 30, 2015. Amounts, ... and presented under International Financial Reporting Standards ("IFRS"). ... said Andrew Rae , President & CEO ... not only value enriching for this clinical program, ...
(Date:11/24/2015)... Florida (PRWEB) , ... November 24, 2015 , ... ... biggest event of the year and one of the premier annual events for ... and ran from 8–11 November 2015, where ISPE hosted the largest number of ...
(Date:11/24/2015)... , Nov. 24, 2015  Clintrax Global, Inc., a worldwide provider ... , today announced that the company has set a new ... 391% quarter on quarter growth posted for Q3 of 2014 to ... and Mexico , with the establishment of an ... 2015. --> United Kingdom and ...
(Date:11/24/2015)... ... November 24, 2015 , ... This fall, global software solutions ... in five states to develop and pitch their BIG ideas to improve health and ... are competing for votes to win the title of SAP's Teen Innovator, an all-expenses ...
Breaking Biology Technology: