Navigation Links
Researchers find new taste in fruit flies: carbonated water
Date:8/29/2007

That fruit fly hovering over your kitchen counter may be attracted to more than the bananas that are going brown; it may also want a sip of your carbonated water. Fruit flies detect and are attracted to the taste of carbon dioxide dissolved in water, such as water found on rotting fruits containing yeast, concludes a study appearing in the August 30 issue of the journal Nature. Scientists at the University of California, Berkeley, who conducted the study, suggest that the ability to taste carbon dioxide may help a fruit fly scout for food that is nutritious over that which is too ripe and potentially toxic. The research is partly funded by the National Institute on Deafness and Other Communication Disorders (NIDCD), one of the National Institutes of Health.

Fruit flies contain similar versions of many human genes, which is why we study them for a variety of health issues, including taste, says James F. Battey, Jr., M.D., Ph.D., director of the NIDCD. This research raises the question of whether people also may have the ability to taste carbon dioxide and perhaps other chemicals in food. If this were found to be true, our sense of taste could be even more complex than we realize. Currently, scientists recognize five tastes in humans: sweet, salty, bitter, sour, and umami, or savory. Before todays findings, fruit flies were known to be able to taste sweet, bitter, and salty.

The researchers note that a fruit flys attraction for the taste of carbon dioxide is on a much smaller scale than for sugar, so it may be used more as a possible flavor enhancer as opposed to a full-fledged taste. This makes sense, they say, since carbon dioxide offers no nutrition to the fly.

In humans, taste occurs by way of taste cells, sensory cells that are clustered in the taste buds of the mouth, tongue, and throat, and that express certain proteins, called receptors. These receptors are activated by specific chemicalscalled tastantsfound in foods and drinks. When a receptor is activated by a tastant, an electrical signal is generated, which travels to the brain. Taste in the fruit fly, or Drosophila melanogaster, operates much the same way, except fruit flies have taste neurons instead of taste cells, and the taste neurons are found in structures called taste pegs and taste bristles instead of buds. Although taste pegs and bristles can be found all over a fruit flys body, most are concentrated on the labellumthe equivalent of a tonguewhich is housed in the proboscis, a long tubular structure originating from the flys head.

To arrive at their findings, senior author Kristin Scott, Ph.D., and her research team made use of a powerful genetics technique that enables fruit fly researchers to tightly control which genes are expressed in a cell and which remain silent. The team first homed in on a class of taste neurons, called E409, found on taste pegs in the fruit flys labellum. These neurons had not been characterized before and were not already associated with known taste receptors for sweet and bitter. They then labeled the neurons with a fluorescent protein and found that their projections extended to separate parts of the taste area of the brain in comparison to the sweet and bitter neurons. Next, the researchers tested the E409 neurons response to an array of compounds and found that substances high in carbon dioxide, such as beer, yeast, and carbonated water, elicited heightened neuron activity as opposed to substances low in carbon dioxide. Finally, they found that fruit flies were attracted to solutions with high carbon dioxide concentrations, while those whose E409 neurons were shut off were not.

Because fruit flies are also able to smell carbon dioxide, the team also wanted to learn if the two senses influenced one another. Under normal conditions, when fruit flies smell carbon dioxide in the air, they are repelled by it. Scott and her team showed that fruit flies that had their E409 neurons shut off avoided high carbon dioxide concentrations in the environment; likewise, flies that were missing antennae, the structures they use to smell their surroundings, were attracted to solutions with high carbon dioxide concentrations. These results indicate that the senses of taste and smell operate independently. As a result, the team concluded that fruit flies use both senses of taste and smell separately to gauge their environment for a potential food source.

Our model is that flies like high local concentrations of carbon dioxide, says Scott. So if carbon dioxide is being produced by the yeast, flies taste it and they like it. But if there are increased global levels of carbon dioxide in the airsuch as if a food source becomes spoiled and potentially toxicthen flies are repelled by it. So we think by having these two different carbon dioxide detectors, flies are able to compare global to local levels of carbon dioxide and then regulate their behavior accordingly.


'/>"/>
Contact: Jennifer Wenger
jwenger@mail.nih.gov
301-496-7243
NIH/National Institute on Deafness and Other Communication Disorders
Source:Eurekalert

Related biology news :

1. Researchers discover way to make cells in the eye sensitive to light
2. Researchers find how protein allows insects to detect and respond to pheromones
3. Researchers Uncover Key Step In Manufacture of Memory Protein
4. NYU researchers simulate molecular biological clock
5. Researchers reveal the infectious impact of salmon farms on wild salmon
6. Researchers identify target for cancer drugs
7. Vital step in cellular migration described by UCSD medical researchers
8. ASU researchers finds novel chemistry at work to provide parrots vibrant red colors
9. UCSD researchers maintain stem cells without contaminated animal feeder layers
10. Researchers discover molecule that causes secondary stroke
11. Researchers find missing genes of ancient organism
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:11/19/2016)... -- Securus Technologies, a leading provider of civil and ... and monitoring, announced today that it has offered a ... independent technology judge determine who has the largest and ... calling platform, and the best customer service. ... what we do – which clearly is not the ...
(Date:11/15/2016)... Research and Markets has announced the addition of the ... their offering. ... The global bioinformatics market ... 6.21 Billion in 2016, growing at a CAGR of 21.1% during ... is driven by the growing demand for nucleic acid and protein ...
(Date:6/22/2016)... ANGELES , June 22, 2016 /PRNewswire/ ... identity management and verification solutions, has partnered ... edge software solutions for Visitor Management, Self-Service ... provides products that add functional enhancements ... partnership provides corporations and venues with an ...
Breaking Biology News(10 mins):
(Date:11/30/2016)... ... November 30, 2016 , ... ... magnet Voice Coil Actuator with a flexure design that ensures high alignment accuracy ... cost-effective pricing and is ideally suited where extreme precision is required, such as ...
(Date:11/30/2016)...  The Allen Institute for Cell Science has ... available collection of gene edited, fluorescently tagged human ... structures with unprecedented clarity. Distributed through the Coriell ... a crucial first step toward visualizing the dynamic ... human cells healthy and what goes wrong in ...
(Date:11/30/2016)... GREENWICH, Connecticut , November 30, 2016 ...   ... Aptuit, LLC today announced ... screening library. An additional 150,000 novel compounds have increased the ... selected to broaden the hit discovery capabilities of the company. ...
(Date:11/30/2016)... Research Triangle Park, North Carolina (PRWEB) , ... November 30, 2016 ... ... Chemistry (IUPAC) approved the names and symbols for four elements: nihonium (Nh), moscovium ... , Following a 5-month period of public review, the names earlier proposed by the ...
Breaking Biology Technology: