Navigation Links
Researchers discover new strategies for antibiotic resistance
Date:8/29/2007

TORRANCE (August 29, 2007) - With infections increasingly resistant to even the most modern antibiotics, researchers at the Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center (LA BioMed) report in the September issue of Nature Reviews Microbiology on new clues they have uncovered in immune system molecules that defend against infection.

Drs. Michael R. Yeaman and Nannette Y. Yount present evidence that small proteins in the immune systems of humans and all kingdoms of life share fundamental structural and functional characteristics that enable these molecules to inhibit or kill microbial pathogens even as these pathogens evolve to resist conventional antibiotics.

"These findings reveal that nature uses a recurring molecular strategy to defend against infection," said Dr. Yeaman. "A clearer understanding of this strategy provides new opportunities to develop innovative anti-infective therapies to better prevent or treat life-threatening infections that resist current antibiotics."

Most modern antibiotics work by targeting specific structures or functions in microbial pathogens. If the targets change due to mutation, pathogens can quickly become resistant to the antibiotics. In contrast, immune system molecules have retained the ability to fight infection even as microbes evolve.

"While human ingenuity has thus far created antibiotics that pathogens seem to resist after just a few years, nature has created molecules in our immune systems that retain the ability to defend against infection even after millions of years of evolution," said Dr. Yeaman. "We have a lot to learn from nature."

The September article sheds new light on the molecular basis for the antimicrobial capabilities of these molecules. Drs. Yeaman and Yount report that a structure they discovered in these molecules in 2004 known as the y core allows for "hypermutability," or unusually high rates of mutation or modification at specific sites within these molecules.

To do so, the y core structure often contains a "b bulge" motif a region that affords structural variations otherwise prohibited in protein biochemistry.

"The ability of host defense molecules to change so quickly and with such diversity may be natures way of keeping pace with rapidly evolving infectious microbes and other threats," said Dr. Yount.

These insights may drive new strategies for anti-infective discovery and development. Drs. Yeaman and Yount also said their discoveries significantly advance understanding of immune system evolution. Microbial pathogens are constantly moving targets; in turn immune systems must adapt or lose effectiveness. Understanding how these molecules have continued to ward off infection could also accelerate development of immunotherapeutics to boost the bodys own defenses against infection or other diseases, and reduce the resistance issues that plague todays antibiotics.


'/>"/>
Contact: Laura Mecoy
lmecoy@issuesmanagement.com
310-546-5860
Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center (LA BioMed)
Source:Eurekalert

Related biology news :

1. Researchers discover way to make cells in the eye sensitive to light
2. Researchers find how protein allows insects to detect and respond to pheromones
3. Researchers Uncover Key Step In Manufacture of Memory Protein
4. NYU researchers simulate molecular biological clock
5. Researchers reveal the infectious impact of salmon farms on wild salmon
6. Researchers identify target for cancer drugs
7. Vital step in cellular migration described by UCSD medical researchers
8. ASU researchers finds novel chemistry at work to provide parrots vibrant red colors
9. UCSD researchers maintain stem cells without contaminated animal feeder layers
10. Researchers discover molecule that causes secondary stroke
11. Researchers find missing genes of ancient organism
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:4/18/2017)... Inc., a global expert in SoC-based imaging and computing solutions, has ... features the company,s hybrid codec technology. A demonstration utilizing TeraFaces ® ... be showcased during the upcoming Medtec Japan at Tokyo Big Sight ... Las Vegas Convention Center April 24-27. ... Click here for an image of the ...
(Date:4/13/2017)... According to a new market research report "Consumer IAM Market by ... Service, Authentication Type, Deployment Mode, Vertical, and Region - Global Forecast to ... USD 14.30 Billion in 2017 to USD 31.75 Billion by 2022, at ... ... MarketsandMarkets Logo ...
(Date:4/11/2017)... , April 11, 2017 No ... but researchers at the New York University Tandon ... of Engineering have found that partial similarities between ... systems used in mobile phones and other electronic ... The vulnerability lies in the fact ...
Breaking Biology News(10 mins):
(Date:10/12/2017)... ... October 12, 2017 , ... They call it the “hairy ... a depiction of a system of linkages and connections so complex and dense ... of computer science at Worcester Polytechnic Institute (WPI) and director of the university’s ...
(Date:10/12/2017)... ... 12, 2017 , ... DuPont Pioneer and recently formed CasZyme, ... into a multiyear collaboration to identify and characterize novel CRISPR-Cas nucleases. The goal ... editing across all applications. , Under the terms of the agreement, Pioneer will ...
(Date:10/12/2017)... (PRWEB) , ... October 12, 2017 , ... ... Surgical Wound Market with the addition of its newest module, US Hemostats & ... market for thrombin hemostats, absorbable hemostats, fibrin sealants, synthetic sealants and biologic sealants ...
(Date:10/12/2017)... CA (PRWEB) , ... October ... ... (https://www.onramp.bio/ ) has launched Rosalind™, the first-ever genomics analysis platform specifically designed ... bioinformatics complexity. Named in honor of pioneering researcher Rosalind Franklin, who made ...
Breaking Biology Technology: