Navigation Links
Researchers developing device to predict proper light exposure for human health
Date:9/5/2007

Troy, N.Y. Scientists have long known that the human body runs like clockwork, guided by a circadian system that responds to daily patterns of light and darkness. Now a team of researchers is developing a personal device to measure daily light intake and activity, which could allow them to predict optimal timing for light therapy to synchronize the circadian clock to the 24-hour solar day and relieve psychosocial stress.

In short, scientists are creating a tool to help people literally lighten up.

Inadequate or irregular light exposure something many individuals face on a regular basis can cause circadian rhythm disruptions that can manifest into sleep and stress-related ailments. Supported by a $1.8 million grant from the National Institutes of Health (NIH), researchers in Rensselaer Polytechnic Institutes Lighting Research Center (LRC) are creating a small, head-mounted device to measure an individuals daily rest and activity patterns, as well as exposure to circadian light short-wavelength light, particularly natural light from the blue sky, that stimulates the circadian system.

The wireless tool will have the capacity to communicate with the user in real-time to give immediate feedback regarding proper light exposure to promote a synchronized circadian rhythm, according to Mark Rea, director of the LRC and principal investigator on the project.

Like a clock that needs to be set daily for accurate time-telling, the circadian clock an internal regulating mechanism that controls the repetition of biological activities such as core body temperature variations, hormone production and secretion, and sleeping and waking patterns, among other functions in the human body requires similar setting from the light each day. A cycle of very bright days and very dark nights is the perfect regulator for the human circadian system, but patterns of light and dark in todays modern world are often inconsistent with this cycle.

The advent of electricity has dramatically changed our light and dark exposure patterns, and indoor lighting can be insufficient to stimulate the circadian clock, Rea said. Exposure to indoor light sources during the night, including computer screens, may be too bright or seen for too long, to properly set the timing of the circadian clock. These disruptions can desynchronize the circadian rhythm from the solar daytime/nighttime cycle, leading to sleep problems and psychosocial stress such as mood and eating disorders, depression, and possibly immune deficiencies.

Outdoor light levels during the day even under cloud cover or during the winter are of much higher levels than those found in windowless, electrically illuminated buildings, and this absence of suitable light may induce circadian darkness, Rea said. If an individuals circadian light intake is deficient during waking hours, our device will be able to reliably predict the light therapy necessary to resynchronize the circadian phase with the solar day.

Such treatments could range from standing outside for 15 minutes to sitting in front of a light box fitted with blue LEDs for a certain amount of time, says Rea.

Rea and his colleague Mariana Figueiro, assistant professor in the LRC and co-PI on the project, will collaborate with scientists from Brown and Yale universities on a study to uncover participants baseline circadian rhythms by collecting information regarding each persons sleeping and waking cycles, light intake, and fluctuations in sleep quality, stress markers, and gene expression, which are all controlled by the circadian rhythm. Then, using light therapy treatment, the team will attempt to shift each participants circadian phase.

The results of the study will provide scientists in the LRC with the information they need to determine the level of accuracy required for the new device to accurately predict light-induced shifting of the circadian phase, according to Figueiro.

Additionally, monitoring each participants genes before, during, and after the light therapy may help the researchers determine whether or not light exposure can express or silence genes influenced by the circadian system, an emerging area of interest to the circadian and cancer research communities who have begun to focus on the possibility that our circadian clock controls the expression of a wide variety of genes, including many cancer-related genes.

Once developed, the new light monitoring and therapy prediction device has the potential to positively affect the lives of millions who suffer from circadian rhythm sleep disorders. Among others, potential populations that could benefit from the tool include college students, who experience a delayed sleep phase and go to bed and arise later than most people; international business travelers who suffer from jet lag; and shift workers who are often active at times opposite the solar day, according to the researchers.


'/>"/>

Contact: Amber Cleveland
clevea@rpi.edu
518-276-2146
Rensselaer Polytechnic Institute
Source:Eurekalert

Related biology news :

1. Researchers discover way to make cells in the eye sensitive to light
2. Researchers find how protein allows insects to detect and respond to pheromones
3. Researchers Uncover Key Step In Manufacture of Memory Protein
4. NYU researchers simulate molecular biological clock
5. Researchers reveal the infectious impact of salmon farms on wild salmon
6. Researchers identify target for cancer drugs
7. Vital step in cellular migration described by UCSD medical researchers
8. ASU researchers finds novel chemistry at work to provide parrots vibrant red colors
9. UCSD researchers maintain stem cells without contaminated animal feeder layers
10. Researchers discover molecule that causes secondary stroke
11. Researchers find missing genes of ancient organism
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:3/30/2017)... The research team of The Hong Kong Polytechnic University (PolyU) ... ground breaking 3D fingerprint minutiae recovery and matching technology, pushing contactless ... use in identification, crime investigation, immigration control, security of access and ... ... A research team led by Dr Ajay Kumar ...
(Date:3/27/2017)... CENTRE, N.Y. , March 27, 2017 /PRNewswire-USNewswire/ ... Healthcare Information and Management Systems Society (HIMSS) Analytics ... Outpatient EMR Adoption Model sm . In addition, ... 12% of U.S. hospitals using an electronic medical ... CHS for its high level of EMR usage ...
(Date:3/23/2017)... Mar. 23, 2017 Research and Markets has ... Analysis & Trends - Industry Forecast to 2025" report to ... ... a CAGR of around 8.8% over the next decade to reach ... analyzes the market estimates and forecasts for all the given segments ...
Breaking Biology News(10 mins):
(Date:8/16/2017)... ... 16, 2017 , ... We are proud to announce the ... our Dilworth, MN site. The inspection took place Monday, July 31st through Friday, ... of a routine Bioresearch Monitoring Program (BIMO) with the USFDA wherein multiple Dermatology ...
(Date:8/15/2017)... (PRWEB) , ... August 15, 2017 , ... Kapstone ... celebrating 10 years of successes helping medical technology companies and inventors develop and safeguard ... a renowned full-service national engineering firm with a portfolio of clients in the United ...
(Date:8/15/2017)... , ... August 15, 2017 , ... ... family of 6” modular downlights designed to stay tightly sealed and perform efficiently ... where damp and wet location listings just aren't enough, such as: hospitals; behavioral ...
(Date:8/14/2017)... ... August 14, 2017 , ... Every year, ... researchers in the antibody community have recently come together to address this antibody ... the laboratory. , The team at Thermo Fisher Scientific ...
Breaking Biology Technology: