Navigation Links
Researchers developing device to predict proper light exposure for human health
Date:9/5/2007

Troy, N.Y. Scientists have long known that the human body runs like clockwork, guided by a circadian system that responds to daily patterns of light and darkness. Now a team of researchers is developing a personal device to measure daily light intake and activity, which could allow them to predict optimal timing for light therapy to synchronize the circadian clock to the 24-hour solar day and relieve psychosocial stress.

In short, scientists are creating a tool to help people literally lighten up.

Inadequate or irregular light exposure something many individuals face on a regular basis can cause circadian rhythm disruptions that can manifest into sleep and stress-related ailments. Supported by a $1.8 million grant from the National Institutes of Health (NIH), researchers in Rensselaer Polytechnic Institutes Lighting Research Center (LRC) are creating a small, head-mounted device to measure an individuals daily rest and activity patterns, as well as exposure to circadian light short-wavelength light, particularly natural light from the blue sky, that stimulates the circadian system.

The wireless tool will have the capacity to communicate with the user in real-time to give immediate feedback regarding proper light exposure to promote a synchronized circadian rhythm, according to Mark Rea, director of the LRC and principal investigator on the project.

Like a clock that needs to be set daily for accurate time-telling, the circadian clock an internal regulating mechanism that controls the repetition of biological activities such as core body temperature variations, hormone production and secretion, and sleeping and waking patterns, among other functions in the human body requires similar setting from the light each day. A cycle of very bright days and very dark nights is the perfect regulator for the human circadian system, but patterns of light and dark in todays modern world are often inconsistent with this cycle.

The advent of electricity has dramatically changed our light and dark exposure patterns, and indoor lighting can be insufficient to stimulate the circadian clock, Rea said. Exposure to indoor light sources during the night, including computer screens, may be too bright or seen for too long, to properly set the timing of the circadian clock. These disruptions can desynchronize the circadian rhythm from the solar daytime/nighttime cycle, leading to sleep problems and psychosocial stress such as mood and eating disorders, depression, and possibly immune deficiencies.

Outdoor light levels during the day even under cloud cover or during the winter are of much higher levels than those found in windowless, electrically illuminated buildings, and this absence of suitable light may induce circadian darkness, Rea said. If an individuals circadian light intake is deficient during waking hours, our device will be able to reliably predict the light therapy necessary to resynchronize the circadian phase with the solar day.

Such treatments could range from standing outside for 15 minutes to sitting in front of a light box fitted with blue LEDs for a certain amount of time, says Rea.

Rea and his colleague Mariana Figueiro, assistant professor in the LRC and co-PI on the project, will collaborate with scientists from Brown and Yale universities on a study to uncover participants baseline circadian rhythms by collecting information regarding each persons sleeping and waking cycles, light intake, and fluctuations in sleep quality, stress markers, and gene expression, which are all controlled by the circadian rhythm. Then, using light therapy treatment, the team will attempt to shift each participants circadian phase.

The results of the study will provide scientists in the LRC with the information they need to determine the level of accuracy required for the new device to accurately predict light-induced shifting of the circadian phase, according to Figueiro.

Additionally, monitoring each participants genes before, during, and after the light therapy may help the researchers determine whether or not light exposure can express or silence genes influenced by the circadian system, an emerging area of interest to the circadian and cancer research communities who have begun to focus on the possibility that our circadian clock controls the expression of a wide variety of genes, including many cancer-related genes.

Once developed, the new light monitoring and therapy prediction device has the potential to positively affect the lives of millions who suffer from circadian rhythm sleep disorders. Among others, potential populations that could benefit from the tool include college students, who experience a delayed sleep phase and go to bed and arise later than most people; international business travelers who suffer from jet lag; and shift workers who are often active at times opposite the solar day, according to the researchers.


'/>"/>

Contact: Amber Cleveland
clevea@rpi.edu
518-276-2146
Rensselaer Polytechnic Institute
Source:Eurekalert

Related biology news :

1. Researchers discover way to make cells in the eye sensitive to light
2. Researchers find how protein allows insects to detect and respond to pheromones
3. Researchers Uncover Key Step In Manufacture of Memory Protein
4. NYU researchers simulate molecular biological clock
5. Researchers reveal the infectious impact of salmon farms on wild salmon
6. Researchers identify target for cancer drugs
7. Vital step in cellular migration described by UCSD medical researchers
8. ASU researchers finds novel chemistry at work to provide parrots vibrant red colors
9. UCSD researchers maintain stem cells without contaminated animal feeder layers
10. Researchers discover molecule that causes secondary stroke
11. Researchers find missing genes of ancient organism
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:5/9/2016)... , UAE, May 9, 2016 ... it comes to expanding freedom for high net worth ... Even in today,s globally connected world, there is still ... system could ever duplicate sealing your deal with a ... second passports by taking advantage of citizenship via investment ...
(Date:4/26/2016)... , April 27, 2016 ... the  "Global Multi-modal Biometrics Market 2016-2020"  report to ... ) , The analysts forecast the ... CAGR of 15.49% during the period 2016-2020.  ... number of sectors such as the healthcare, BFSI, ...
(Date:4/13/2016)... April 13, 2016  IMPOWER physicians supporting Medicaid patients ... a new clinical standard in telehealth thanks to a ... the higi platform, IMPOWER patients can routinely track key ... body mass index, and, when they opt in, share ... visit to a local retail location at no cost. ...
Breaking Biology News(10 mins):
(Date:6/23/2016)... ... June 23, 2016 , ... Supplyframe, the ... the Supplyframe Design Lab . Located in Pasadena, Calif., the Design Lab’s ... how hardware projects are designed, built and brought to market. , The Design ...
(Date:6/23/2016)... , June 23, 2016 Apellis Pharmaceuticals, ... 1 clinical trials of its complement C3 inhibitor, ... and multiple ascending dose studies designed to assess ... of subcutaneous injection in healthy adult volunteers. ... either as a single dose (ranging from 45 ...
(Date:6/23/2016)... , June 23, 2016 On Wednesday, ... at 4,833.32, down 0.22%; the Dow Jones Industrial Average edged ... closed at 2,085.45, down 0.17%. Stock-Callers.com has initiated coverage on ... ), Nektar Therapeutics (NASDAQ: NKTR ), Aralez Pharmaceuticals ... (NASDAQ: BIND ). Learn more about these stocks ...
(Date:6/23/2016)... ... June 23, 2016 , ... Velocity Products, ... tools designed, tuned and optimized exclusively for Okuma CNC machining centers at The ... of a collaboration among several companies with expertise in toolholding, cutting tools, machining ...
Breaking Biology Technology: