Navigation Links
Researchers develop oral delivery system to treat inflammatory bowel diseases
Date:10/10/2010

Researchers at the Georgia Institute of Technology and Emory University have developed a novel approach for delivering small bits of genetic material into the body to improve the treatment of inflammatory bowel diseases. Delivering short strands of RNA into cells has become a popular research area because of its potential therapeutic applications, but how to deliver them into targeted cells in a living organism has been an obstacle.

In the Oct. 10 advance online edition of the journal Nature Materials, researchers describe how they encapsulated short pieces of RNA into engineered particles called thioketal nanoparticles and orally delivered the genetic material directly to the inflamed intestines of animals. The research was sponsored by the National Science Foundation and National Institutes of Health.

"The thioketal nanoparticles we designed are stable in both acids and bases and only break open to release the pieces of RNA in the presence of reactive oxygen species, which are found in and around inflamed tissue in the gastrointestinal tract of individuals with inflammatory bowel diseases," said Niren Murthy, an associate professor in the Wallace H. Coulter Department of Biomedical Engineering at Georgia Tech and Emory University.

This work was done in collaboration with Emory University Division of Digestive Diseases professor Shanthi Sitaraman, associate professor Didier Merlin and postdoctoral fellow Guillaume Dalmasso.

The thioketal nanoparticles protect the small interfering RNAs (siRNAs) from the harsh environment of the gastrointestinal tract and target them directly to the inflamed intestinal tissues. This localized approach is necessary because siRNAs can cause major side-effects if injected systemically.

In the paper, the thioketal nanoparticles were formulated from a new polymer -- poly-(1,4-phenyleneacetone dimethylene thioketal) (PPADT) -- and engineered to have a diameter of approximately 600 nanometers for optimal oral delivery.

For their experiments, the researchers used a mouse model of ulcerative colitis -- a debilitating inflammatory bowel disease in which the digestive tract becomes inflamed, causing severe diarrhea and abdominal pain that can lead to life-threatening complications.

The researchers orally administered thioketal nanoparticles loaded with siRNA that inhibits an inflammation-promoting cytokine called tumor necrosis factor - alpha (TNF-α). The nanoparticles traveled directly to the mouse colons where reactive oxygen species were being produced in excess and decreased the cytokine production levels there.

Tissue samples from the colons treated with siRNA delivered by these thioketal nanoparticles exhibited intact epitheliums, well-defined fingerlike "crypt" structures and lower levels of inflammation -- signs that the colon was protected against ulcerative colitis.

"Since ulcerative colitis is restricted to the colon, these results confirm that the siRNA-loaded thioketal nanoparticles remain stable in non-inflamed regions of the gastrointestinal tract while targeting siRNA to inflamed intestinal tissues," explained the paper's lead author Scott Wilson, a graduate student in the Georgia Tech School of Chemical & Biomolecular Engineering.

The paper showed that thioketal nanoparticles have the chemical and physical properties needed to overcome the obstacles of gastrointestinal fluids, intestinal mucosa and cellular barriers to provide therapy to inflamed intestinal tissues, he added.

The researchers are currently working on increasing the degradation rate of the nanoparticles and enhancing their reactivity with reactive oxygen species. The team also plans to conduct a biodistribution study to detail how the nanoparticles travel through the body.

"Polymer toxicity is something we'll have to investigate further, but during this study we discovered that thioketal nanoparticles loaded with siRNA have a cell toxicity profile similar to nanoparticles formulated from the FDA-approved material poly(lactic-co-glycolic acid) (PLGA)," added Murthy.

In the future, thioketal nanoparticles may become a significant player in the treatment of numerous gastrointestinal diseases linked to intestinal inflammation, including gastrointestinal cancers, inflammatory bowel diseases and viral infections, according to Murthy.


'/>"/>

Contact: Abby Vogel Robinson
abby@innovate.gatech.edu
404-385-3364
Georgia Institute of Technology Research News
Source:Eurekalert  

Related biology news :

1. In Parkinsons disease, brain cells abandon mitochondria, researchers report
2. MIT researchers develop a better way to see molecules at work in living brain cells
3. Scripps researchers, UCSD chemists to create center devoted to chemistrys influence on climate
4. New fisheries system will save about $20 million, Iowa State University researchers find
5. The world is full of darkness, reflected in the physiology of the human retina, Penn researchers say
6. FSU researchers examine how bacteria become resistant to antibiotics
7. Knome Awards Human Exome Sequencing and Analysis to Biomedical Researchers
8. Researchers study sleep apnea and lack of oxygen
9. Bonn researchers use light to make the heart stumble
10. Researchers engineer adult stem cells that do not age
11. OU researchers selected by Navy
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
Researchers develop oral delivery system to treat inflammatory bowel diseases
(Date:5/6/2017)... , May 5, 2017 RAM ... announced a new breakthrough in biometric authentication based ... quantum mechanical properties to perform biometric authentication. These new ... semiconductor material created by Ram Group and its ... entertainment, transportation, supply chains and security. Ram Group ...
(Date:4/17/2017)... , April 17, 2017 NXT-ID, Inc. (NASDAQ: ... announces the filing of its 2016 Annual Report on Form 10-K ... Commission. ... 10-K is available in the Investor Relations section of the Company,s ... the SEC,s website at http://www.sec.gov . 2016 Year ...
(Date:4/11/2017)... Research and Markets has announced the addition of the "Global ... ... at a CAGR of 30.37% during the period 2017-2021. ... based on an in-depth market analysis with inputs from industry experts. ... the coming years. The report also includes a discussion of the ...
Breaking Biology News(10 mins):
(Date:5/18/2017)... ... May 17, 2017 , ... HOLLOWAY AMERICA, a leading ... and dairy, munitions, and pharmaceutical/biotech, recently introduced The Revolution Lift™, a new precision-controlled ... improvement in technology comes on the heels of HOLLOWAY’s release of the intelliVessel™, ...
(Date:5/16/2017)... ... May 16, 2017 , ... ... its new ProxiMeta™ Hi-C metagenomic deconvolution service. ProxiMeta enables researchers to obtain ... DNA extraction—speeding research insights at lower cost. , “We’re very excited about ...
(Date:5/16/2017)... ... ... On Tuesday, May 23 at 10:30 AM, James Sherley, Director of Asymmetrex ... that his company has recently achieved in collaboration with its partner, AlphaSTAR Corporation ... first partnering conference, Cell & Gene Exchange 2017 . In addition to ...
(Date:5/15/2017)... 15, 2017  IBM (NYSE: IBM ) scientists ... double-stranded DNA molecules with the potential to efficiently ... This technology complements the IBM Research,s "lab-on-a-chip" ... exosomes and which may also contain biomarkers for ... array of diamond shaped micropillars 1 to ...
Breaking Biology Technology: