Navigation Links
Researchers design artificial cells that could power medical implants
Date:10/9/2008

Researchers at Yale University have created a blueprint for artificial cells that are more powerful and efficient than the natural cells they mimic and could one day be used to power tiny medical implants.

The scientists began with the question of whether an artificial version of the electrocyte the energy-generating cells in electric eels could be designed as a potential power source. "The electric eel is very efficient at generating electricity," said Jian Xu, a postdoctoral associate in Yale's Department of Chemical Engineering. "It can generate more electricity than a lot of electrical devices."

Xu came up with the first blueprint that shows how the electrocyte's different ion channels work together to produce the fish's electricity while he was a graduate student under former Yale assistant professor of mechanical engineering David LaVan, now at the National Institute of Standards and Technology.

But the scientists didn't stop there. "We're still trying to understand how the mechanisms in these cells work," said LaVan. "But we asked ourselves: 'Do we know enough to sit down and start thinking about how to build these things?' Nobody had really done that before."

Using the new blueprint as a guide, LaVan and Xu set about designing an artificial cell that could replicate the electrocyte's energy production. "We wanted to see if nature had already optimized the power output and energy conversion efficiency of this cell," said Xu. "And we found that an artificial cell could actually outperform a natural cell, which was a very surprising result."

The artificial cell LaVan and Xu modeled is capable of producing 28 percent more electricity than the eel's own electrocyte, with 31 percent more efficiency in converting the cell's chemical energy derived from the eel's food into electricity.

While eels use thousands of electrocytes to produce charges of up to 600 volts, LaVan and Xu show it would be possible to create a smaller "bio-battery" using several dozen artificial cells. The tiny bio-batteries would only need to be about -inch thick to produce the small voltages needed to power tiny electrical devices such as retinal implants or other prostheses.

Although the engineers came up with a design, it will still be some time before the artificial cells are actually built. For one thing, they still need a power source before they could start producing electricity. LaVan speculates the cells could be powered in a way similar to their natural counterparts. It's possible, he said, that bacteria could be employed to recycle ATP responsible for transferring energy within the cell using glucose, a common source of chemical energy derived from food.

With an energy source in place, the artificial cells could one day power medical implants and would provide a big advantage over battery-operated devices. "If it breaks, there are no toxins released into your system," said Xu. "It would be just like any other cell in your body."


'/>"/>

Contact: Suzanne Taylor Muzzin
suzanne.taylormuzzin@yale.edu
203-432-8555
Yale University
Source:Eurekalert

Related biology news :

1. Researchers identify proteins involved in new neurodegenerative syndrome
2. Texas researchers and educators head for Antarctica
3. MGH researchers describe new way to identify, evolve novel enzymes
4. University of Pennsylvania researchers develop formula to gauge risk of disease clusters
5. U of MN researchers discover noninvasive diagnostic tool for brain diseases
6. U of Minnesota researchers discover noninvasive diagnostic tool for brain diseases
7. Researchers discover new strategies for antibiotic resistance
8. Researchers find new taste in fruit flies: carbonated water
9. Binghamton University researchers investigate evolving malaria resistance
10. UIC researchers find promising new targets for antibiotics
11. Researchers develop simple method to create natural drug products
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:3/3/2016)... , March 3, 2016  FlexTech, a SEMI ... categories of Innovation, Research & Development, Leadership in Education, ... This is the 9 th year of the ... of companies and individuals from past years . ... on a pre-described set of criteria, by a panel ...
(Date:3/2/2016)... 2016 http://www.researchandmarkets.com/research/wzwqtz/global_biometrics ... the  "Global Biometrics Market in Hospitality Sector ... http://photos.prnewswire.com/prnh/20130307/600769) , , Global biometrics market in ... CAGR of around 27%   --> ... the addition of the  "Global Biometrics Market ...
(Date:3/1/2016)... FRANCISCO , March 1, 2016  (RSAC Booth ... year, but a whopping $118 billion is lost to ... to overzealous and inaccurate fraud detection. At the RSA ... in the way companies handle authentication by devaluing the ... and behavioral analytics. --> ...
Breaking Biology News(10 mins):
(Date:4/27/2016)... New York, NY (PRWEB) , ... April 27, ... ... without realizing it. Touch screen mobile devices with fingerprint recognition for secure ... image libraries are only a few ways consumers are interacting with biometrics technology ...
(Date:4/27/2016)... RESEARCH TRIANGLE PARK, N.C. , April ... UTHR ) announced today that Martine Rothblatt , ... will provide an overview and update on the company,s ... Health Care Conference. The presentation will take ... Eastern Time, and can be accessed via a live ...
(Date:4/27/2016)... ... April 27, 2016 , ... ... has joined the company as an Expert Consultant. Mr. Clark was formerly ... and managing the development of small molecule monographs based on analytical methods. ...
(Date:4/27/2016)... ... April 27, 2016 , ... ... PET (Positron Emission Tomography) and MRI (Magnetic Resonance Imaging) in existing third-party MRI ... testing novel treatments in small animal subjects. Simultaneous PET/MRI imaging offers a solution ...
Breaking Biology Technology: