Navigation Links
Researchers design artificial cells that could power medical implants

Researchers at Yale University have created a blueprint for artificial cells that are more powerful and efficient than the natural cells they mimic and could one day be used to power tiny medical implants.

The scientists began with the question of whether an artificial version of the electrocyte the energy-generating cells in electric eels could be designed as a potential power source. "The electric eel is very efficient at generating electricity," said Jian Xu, a postdoctoral associate in Yale's Department of Chemical Engineering. "It can generate more electricity than a lot of electrical devices."

Xu came up with the first blueprint that shows how the electrocyte's different ion channels work together to produce the fish's electricity while he was a graduate student under former Yale assistant professor of mechanical engineering David LaVan, now at the National Institute of Standards and Technology.

But the scientists didn't stop there. "We're still trying to understand how the mechanisms in these cells work," said LaVan. "But we asked ourselves: 'Do we know enough to sit down and start thinking about how to build these things?' Nobody had really done that before."

Using the new blueprint as a guide, LaVan and Xu set about designing an artificial cell that could replicate the electrocyte's energy production. "We wanted to see if nature had already optimized the power output and energy conversion efficiency of this cell," said Xu. "And we found that an artificial cell could actually outperform a natural cell, which was a very surprising result."

The artificial cell LaVan and Xu modeled is capable of producing 28 percent more electricity than the eel's own electrocyte, with 31 percent more efficiency in converting the cell's chemical energy derived from the eel's food into electricity.

While eels use thousands of electrocytes to produce charges of up to 600 volts, LaVan and Xu show it would be possible to create a smaller "bio-battery" using several dozen artificial cells. The tiny bio-batteries would only need to be about -inch thick to produce the small voltages needed to power tiny electrical devices such as retinal implants or other prostheses.

Although the engineers came up with a design, it will still be some time before the artificial cells are actually built. For one thing, they still need a power source before they could start producing electricity. LaVan speculates the cells could be powered in a way similar to their natural counterparts. It's possible, he said, that bacteria could be employed to recycle ATP responsible for transferring energy within the cell using glucose, a common source of chemical energy derived from food.

With an energy source in place, the artificial cells could one day power medical implants and would provide a big advantage over battery-operated devices. "If it breaks, there are no toxins released into your system," said Xu. "It would be just like any other cell in your body."


Contact: Suzanne Taylor Muzzin
Yale University

Related biology news :

1. Researchers identify proteins involved in new neurodegenerative syndrome
2. Texas researchers and educators head for Antarctica
3. MGH researchers describe new way to identify, evolve novel enzymes
4. University of Pennsylvania researchers develop formula to gauge risk of disease clusters
5. U of MN researchers discover noninvasive diagnostic tool for brain diseases
6. U of Minnesota researchers discover noninvasive diagnostic tool for brain diseases
7. Researchers discover new strategies for antibiotic resistance
8. Researchers find new taste in fruit flies: carbonated water
9. Binghamton University researchers investigate evolving malaria resistance
10. UIC researchers find promising new targets for antibiotics
11. Researchers develop simple method to create natural drug products
Post Your Comments:
(Date:4/18/2017)... 18, 2017  Socionext Inc., a global expert in SoC-based imaging ... server, the M820, which features the company,s hybrid codec technology. A ... Tera Probe, Inc., will be showcased during the upcoming Medtec Japan ... at the Las Vegas Convention Center April ... Click here for ...
(Date:4/11/2017)... , April 11, 2017 Crossmatch®, ... secure authentication solutions, today announced that it has ... Advanced Research Projects Activity (IARPA) to develop next-generation ... program. "Innovation has been a driving ... Thor program will allow us to innovate and ...
(Date:4/6/2017)... April 6, 2017 Forecasts by ... Document Readers, by End-Use (Transportation & Logistics, Government & ... Gas & Fossil Generation Facility, Nuclear Power), Industrial, Retail, ... Are you looking for a definitive report ... ...
Breaking Biology News(10 mins):
(Date:10/11/2017)... ... 2017 , ... ComplianceOnline’s Medical Device Summit is back for its 4th year. ... San Francisco, CA. The Summit brings together current and former FDA office bearers, regulators, ... government officials from around the world to address key issues in device compliance, quality ...
(Date:10/11/2017)... ... , ... Disappearing forests and increased emissions are the main causes of the ... Especially those living in larger cities are affected by air pollution related diseases. , ... pollution-affected countries globally - decided to take action. , “I knew I had to ...
(Date:10/10/2017)... ... October 10, 2017 , ... ... conjugate (ADC) therapeutics, today confirmed licensing rights that give it exclusive global ... technology developed in collaboration with Children’s Hospital Los Angeles (CHLA). Additionally, ...
(Date:10/10/2017)... 2017 SomaGenics announced the receipt of a ... RealSeq®-SC (Single Cell), expected to be the first commercially ... microRNAs) from single cells using NGS methods. The NIH,s ... accelerate development of approaches to analyze the heterogeneity of ... techniques for measuring levels of mRNAs in individual cells ...
Breaking Biology Technology: