Navigation Links
Researcher tricks immune system in diabetic mice
Date:11/20/2008

CHICAGO -- The body's immune system hates strangers. When its security patrol spots a foreign cell, it annihilates it.

This is the problem when people with type 1 diabetes undergo human islet cell transplantation. The islet cells from a donor pancreas produce robust amounts of insulin for the recipient -- often permitting independence from insulin therapy. However, the immune system tries to kill the new hard-working islets.

A person who has the transplant procedure must take powerful immunosuppressive drugs to prevent their bodies from rejecting the cells. The drugs, however, are toxic to the new islet cells and put patients at risk for infections and cancer.

Now researchers at Northwestern University's Feinberg School of Medicine have found a way to trick the immune system of mice into believing those transplanted islets are its own cells. This new technique eliminated the need for the immunosuppressive drugs in mice with chemically-induced diabetes after they had islet transplantation.

"We made the recipient feel that the donor cells are their own," explained Stephen Miller, co-principal investigator and the Judy Gugenheim Research Professor of Microbiology-Immunology at the Feinberg School. "This technique is a highly attractive potential therapy for human islet cell transplantation." The findings were reported in the journal Proceedings of the National Academy of Science in the fall.

As many as 3 million people in the U.S. may have type 1 diabetes, a disease that develops in children and adolescents. There are about 50 to 70 islet transplants, an experimental procedure, annually in North America.

Miller said he was happily surprised to see that such a high percentage of recipients of the transplanted islet cells -- greater than 70 percent -- maintained transplants long-term. His research showed the host's tolerance to these transplanted cells seemed to be permanent, lasting for at least 150 days. Xunrong Luo, assistant professor of medicine in nephrology at the Feinberg School, was co-principal investigator for the study.

In the study, researchers took a type of white blood cell from the islet donor's spleen, called splenocytes, and treated them with a chemical that masked the cells' identity. They then injected these chemically treated cells into diabetic mice before and after the mice underwent islet cell transplantation. As a result, the immune system of the mice didn't try to reject the cells, because it didn't perceive them as foreign and dangerous.

When the same test was done without pre-treated cells, the immune system rejected the transplanted islets within 15 days.

In an upcoming study, Miller and Luo will work with mice that have autoimmune disease that destroys their islet cells, as occurs in type 1 diabetes. Researchers will use therapies that prevent the autoimmune system's response against its own beta cells (which are part of the islets) as well as prevent the recipient's immune responses against the transplanted islet cells.

"We have ways we can do both," Miller said. "Hopefully this next study will show we can take combined therapies for underlying autoimmune disease and transplanted islets. If we do that together, we hopefully can cure an animal who became diabetic from autoimmune disease." If successful, the next step would be testing the technique on human subjects.

Miller said this technique also has applications for treating other autoimmune diseases such as multiple sclerosis.


'/>"/>

Contact: Marla Paul
Marla-Paul@northwestern.edu
312-503-8928
Northwestern University
Source:Eurekalert

Related biology news :

1. Researchers identify proteins involved in new neurodegenerative syndrome
2. Texas researchers and educators head for Antarctica
3. MGH researchers describe new way to identify, evolve novel enzymes
4. University of Pennsylvania researchers develop formula to gauge risk of disease clusters
5. University of Oregon researcher finds that on waters surface, nitric acid is not so tough
6. U of MN researchers discover noninvasive diagnostic tool for brain diseases
7. U of Minnesota researchers discover noninvasive diagnostic tool for brain diseases
8. Researchers discover new strategies for antibiotic resistance
9. Researchers find new taste in fruit flies: carbonated water
10. Binghamton University researchers investigate evolving malaria resistance
11. Antioxidant to retard wrinkles discovered by Hebrew University researcher
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:1/24/2017)... , Jan. 24, 2017  It sounds simple ... sock that monitors vital signs and alerts parents ... infant,s oxygen saturation level drops. But pediatric experts ... to parents, with no evidence of medical benefits, ... are marketed aggressively to parents of healthy babies, ...
(Date:1/19/2017)... , Jan. 19, 2017 Sensory ... experience and security for consumer electronics, and ... processing systems and cybersecurity solutions, today announced a ... and financial institutions worldwide to bolster security of ... end-to-end secure user authentication platforms they offer, innerCore ...
(Date:1/12/2017)... -- Trovagene, Inc. (NASDAQ: TROV ), a developer ... it has signed agreements with seven strategic partners across ... Middle East for commercialization of the Trovera™ ... of international distribution agreements for Trovagene,s CLIA based liquid ... The initial partners will introduce Trovagene,s liquid biopsy tests ...
Breaking Biology News(10 mins):
(Date:2/17/2017)... , Feb. 17, 2017  BioGenex, a ... announce development of a novel system for quantitative ... with the University of Rochester (NY, USA) and ... The new system is able to accurately quantify ... HER2 (Human epidermal growth factor receptor-2) in clinical ...
(Date:2/16/2017)... ... February 16, 2017 , ... Avomeen & MichBio will be hosting a ... held at Avomeen Analytical Services (4840 Venture Dr., Ann Arbor, Michigan 48108). BioMixers ... an opportunity to interact with peers, make new connections and talk bio biz. , ...
(Date:2/16/2017)... -- Research and Markets has announced the ... report to their offering. ... The study scope ... plasmids, chassis organisms, synthetic cells, production systems), enabling technologies ... and specialty media) and enabled technologies (biofuels, chemicals, pharmaceuticals, ...
(Date:2/16/2017)... , Feb. 16, 2017  Dermata Therapeutics, ... products to treat a variety of dermatological diseases, ... Series 1a financing and entered into a $5 ...  Dermata intends to use the capital for general ... major advancements in the treatment of serious diseases ...
Breaking Biology Technology: