Navigation Links
Random walks on DNA
Date:4/19/2013

Scientists have revealed how a bacterial enzyme has evolved an energy-efficient method to move long distances along DNA. The findings, published in Science, present further insight into the coupling of chemical and mechanical energy by a class of enzymes called helicases, a widely-distributed group of proteins, which in human cells are implicated in some cancers.

The new helicase mechanism discovered in this study, led by researchers from the University of Bristol and the Technische Universitt Dresden in Germany, may help resolve some of the unexplained roles for helicases in human biology, and in turn help researchers to develop future technological or medical applications.

A commonly held view of DNA helicases is that they move along DNA and "unzip" the double helix to produce single strands of DNA for repair or copying. This process requires mechanical work, so enzyme movement must be coupled to consumption of the chemical fuel ATP. These enzymes are thus often considered as molecular motors.

In the new work, Ralf Seidel and his team at the Technische Universitt Dresden developed a microscope that can stretch single DNA molecules whilst at the same time observe the movement of single fluorescently-labelled helicases. In parallel, the Bristol researchers in the DNA-Protein Interactions Unit used millisecond-resolution fluorescence spectroscopy to reveal dynamic changes in protein conformation and the kinetics of ATP consumption.

The team studied a helicase found in bacteria that moves along viral (bacteriophage) DNA. The work demonstrated that, surprisingly, the enzyme only consumed ATP at the start of the reaction in order to change conformation. Thereafter long-range movement along the DNA was driven by thermal motion; in other words by collisions with the surrounding water molecules. This produces a characteristic one-dimensional "random walk" (see picture), where the protein is just as likely to move backwards as forwards.

Mark Szczelkun, Professor of Biochemistry from the University's School of Biochemistry and one of the senior authors of the study, said: "This enzyme uses the energy from ATP to force a change in protein conformation rather than to unwind DNA. The movement on DNA thereafter doesn't require an energy input from ATP. Although movement is random, it occurs very rapidly and the enzyme can cover long distances on DNA faster than many ATP-driven motors. This can be thought of as a more energy-efficient way to move along DNA and we suggest that this mechanism may be used in other genetic processes, such as DNA repair."


'/>"/>

Contact: Caroline Clancy
caroline.clancy@bristol.ac.uk
44-011-792-88086
University of Bristol
Source:Eurekalert

Related biology news :

1. Random Forests Tree Ensembles: Salford Systems Exclusive Insight
2. Far from random, evolution follows a predictable genetic pattern, Princeton researchers find
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:1/13/2016)... DUBLIN , January 13, 2016 ... has announced the addition of the  ... - Estimation & Forecast (2015-2020)" ... http://www.researchandmarkets.com/research/7h6hnn/india_biometrics ) has announced the ... & Identification Market - Estimation & ...
(Date:1/11/2016)... -- higi, the leading retail and omni-channel community engagement platform ... mobile, today announced it has closed funding of ... --> --> The ... health platform – its network of health stations, ... services and programs to retail partners and healthcare ...
(Date:1/8/2016)... , January 8, 2016 NXTD ... and WorldVentures ® , a privately held leading direct ... Inc. 5000 fastest-growing company announced that on ... of $2 million in Nxt-ID to develop a proprietary ... Nxt-ID,s Wocket ® , a unique smart wallet that ...
Breaking Biology News(10 mins):
(Date:2/11/2016)... ... February 11, 2016 , ... Global Stem Cells Group, ... Quito, Ecuador. The new facility will provide advanced protocols and state-of-the-art techniques in ... world. , The new GSCG clinic is headed by four prominent Ecuadorian ...
(Date:2/10/2016)...  The Maryland House of Delegates and House Speaker ... of Maryland School of Medicine Dean E. Albert ... Medical System President and CEO Robert Chrencik , ... honor given to the public by the leader of ... and Mr. Chrencik for their contributions to our ...
(Date:2/10/2016)... and New York, New York (PRWEB) , ... ... ... Regeneron Pharmaceuticals Inc. (NASDAQ: REGN) today announced that it has joined ... new vaccines and immunotherapies for infectious diseases and cancer. , The ...
(Date:2/10/2016)... 10, 2016  Matchbook, Inc., a company specializing ... biotech companies, announced today the appointment of ... Jim brings nearly 25 years of experience in ... spent nearly two decades in executive level roles ... at Genzyme and, most recently headed global logistics ...
Breaking Biology Technology: