Navigation Links
Random walks on DNA
Date:4/19/2013

Scientists have revealed how a bacterial enzyme has evolved an energy-efficient method to move long distances along DNA. The findings, published in Science, present further insight into the coupling of chemical and mechanical energy by a class of enzymes called helicases, a widely-distributed group of proteins, which in human cells are implicated in some cancers.

The new helicase mechanism discovered in this study, led by researchers from the University of Bristol and the Technische Universitt Dresden in Germany, may help resolve some of the unexplained roles for helicases in human biology, and in turn help researchers to develop future technological or medical applications.

A commonly held view of DNA helicases is that they move along DNA and "unzip" the double helix to produce single strands of DNA for repair or copying. This process requires mechanical work, so enzyme movement must be coupled to consumption of the chemical fuel ATP. These enzymes are thus often considered as molecular motors.

In the new work, Ralf Seidel and his team at the Technische Universitt Dresden developed a microscope that can stretch single DNA molecules whilst at the same time observe the movement of single fluorescently-labelled helicases. In parallel, the Bristol researchers in the DNA-Protein Interactions Unit used millisecond-resolution fluorescence spectroscopy to reveal dynamic changes in protein conformation and the kinetics of ATP consumption.

The team studied a helicase found in bacteria that moves along viral (bacteriophage) DNA. The work demonstrated that, surprisingly, the enzyme only consumed ATP at the start of the reaction in order to change conformation. Thereafter long-range movement along the DNA was driven by thermal motion; in other words by collisions with the surrounding water molecules. This produces a characteristic one-dimensional "random walk" (see picture), where the protein is just as likely to move backwards as forwards.

Mark Szczelkun, Professor of Biochemistry from the University's School of Biochemistry and one of the senior authors of the study, said: "This enzyme uses the energy from ATP to force a change in protein conformation rather than to unwind DNA. The movement on DNA thereafter doesn't require an energy input from ATP. Although movement is random, it occurs very rapidly and the enzyme can cover long distances on DNA faster than many ATP-driven motors. This can be thought of as a more energy-efficient way to move along DNA and we suggest that this mechanism may be used in other genetic processes, such as DNA repair."


'/>"/>

Contact: Caroline Clancy
caroline.clancy@bristol.ac.uk
44-011-792-88086
University of Bristol
Source:Eurekalert

Related biology news :

1. Random Forests Tree Ensembles: Salford Systems Exclusive Insight
2. Far from random, evolution follows a predictable genetic pattern, Princeton researchers find
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:6/2/2016)... -- The Department of Transport Management (DOTM) of ... US Dollar project, for the , Supply and ... and IT Infrastructure , to Decatur ... of Identity Management Solutions. Numerous renowned international vendors participated in ... was selected for the most compliant and innovative solution. ...
(Date:5/20/2016)... , May 20, 2016  VoiceIt is ... partnership with VoicePass. By working together, ... experience.  Because VoiceIt and VoicePass take slightly different ... engines increases both security and usability. ... excitement about this new partnership. "This ...
(Date:4/28/2016)... India , April 28, 2016 ... Infosys (NYSE: INFY ), and Samsung SDS, a ... that will provide end customers with a more secure, ... services.      (Logo: http://photos.prnewswire.com/prnh/20130122/589162 ) , ... services, but it also plays a fundamental part in enabling ...
Breaking Biology News(10 mins):
(Date:6/27/2016)... ... June 27, 2016 , ... Newly created 4Sight Medical ... to the healthcare market. The company's primary focus is on new product introductions, ... strategies that are necessary to help companies efficiently bring their products to market. ...
(Date:6/27/2016)... , June 27, 2016   Ginkgo Bioworks , ... industrial engineering, was today awarded as one of ... of the world,s most innovative companies. Ginkgo Bioworks ... for the real world in the nutrition, health ... work directly with customers including Fortune 500 companies ...
(Date:6/24/2016)... ... June 24, 2016 , ... While the majority of commercial spectrophotometers and fluorometers ... the 6000i models are higher end machines that use the more unconventional z-dimension of ... beam from the bottom of the cuvette holder. , FireflySci has developed several ...
(Date:6/23/2016)... (PRWEB) , ... June 23, 2016 , ... ... is pleased to announce the launch of their brand, UP4™ Probiotics, into Target ... over 35 years, is proud to add Target to its list of well-respected ...
Breaking Biology Technology: