Navigation Links
Project aims to fuse top-down, bottom-up approaches in systems biology
Date:5/4/2011

The National Institutes of Health has awarded Virginia Tech researchers a $2.13 million grant to develop new systems biology approaches to study cells, one of the most basic units of life. Systems biology aims to study complex cellular systems by systematically stimulating them, monitoring cellular responses, formulating mathematical and computational models to understand the data, and proposing new experiments to refine these models.

T.M. Murali, associate professor of computer science at Virginia Tech https://bioinformatics.cs.vt.edu/~murali/; John Tyson, university distinguished professor of biology, http://www.biol.vt.edu/faculty/tyson/; and Jean Peccoud of the Virginia Bioinformatics Institute http://www.vbi.vt.edu/faculty/personal/Jean_Peccoud, proposed to the National Institutes of Health a novel approach to link the two dominant paradigms in systems biology.

NIH is awarding the interdisciplinary team for their proposal titled "Integrating Top-Down and Bottom-Up Models in Systems Biology with Application to Cell Cycle Control in Budding Yeast."

Murali, principal investigator, described the project: "Two distinct approaches are being used to study complex cellular systems. The first, top-down approach automatically analyzes large-scale datasets for correlations between genes and proteins. However, it is often difficult to design experiments from these results.

"The second, bottom-up approach painstakingly crafts detailed models that can be simulated computationally. Although such simulations can suggest wet lab experiments, developing the models is a manual process that can take many years. These approaches have largely been developed separately until now. Our project will meld the strengths of these two approaches into a single framework, thereby allowing efficient and automated data-driven analysis to augment models that can be simulated."

The advantage of the collaborative research is the merging of the expertise of the three researchers. Murali conducts research in network and combinatorial algorithms in the context of systems biology. Tyson's group has used differential equations to model regulatory networks for over 20 years. Peccoud is a molecular geneticist by training, and has proposed methods to map genotypes to phenotypes using differential equation models of molecular networks.

The three scientists will develop a framework for generating hypotheses from top-down models, test these hypotheses by integrating them into bottom-up models, and validating the hypotheses using experiments. They will use these developments to study cell division in budding yeast.

"With an improved understanding of cell cycle regulation in budding yeast, we should be able to suggest novel experiments that provide a better understanding of molecular control systems," Murali explained. Murali projected that the "methods developed in this project should be relevant to the study of any complex cellular system, including the development of cancer and the spread of infectious diseases. If we are successful, our project will result in significant advances in computationally driven experimental biology."


'/>"/>

Contact: Lynn Nystrom
tansy@vt.edu
540-231-4371
Virginia Tech
Source:Eurekalert  

Related biology news :

1. €12 million ($16.9 million) project to develop new tools for malaria control
2. Uncertain future for Joshua trees projected with climate change
3. BGI to Play Pivotal Sampling, Next-Generation Sequencing and Bioinformatics Role in Earth Microbiome Project
4. Drier conditions projected to accelerate dust storms in the southwest
5. Climate projections show human health impacts possible within 30 years
6. Former ASPB president leading sustainable bioenergy education project
7. $4 million project to protect Irish and Scottish waterways
8. LCD projector used to control brain and muscles of tiny organisms such as worms
9. Water, water everywhere focus of new sustainability project
10. Grants fund projects that will tackle Grand Challenges
11. Patriot Data Solutions Group Selected to Assist Louisiana District Attorney Association with Pilot Project
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
Project aims to fuse top-down, bottom-up approaches in systems biology 
(Date:6/2/2016)... The Weather Company , an IBM Business (NYSE: IBM ... which consumers will be able to interact with IBM Watson ... or text and receive relevant information about the product or ... long sought an advertising solution that can create a one-to-one ... valuable; and can scale across millions of interactions and touchpoints. ...
(Date:5/20/2016)... , May 20, 2016  VoiceIt is excited ... with VoicePass. By working together, VoiceIt ...  Because VoiceIt and VoicePass take slightly different approaches ... increases both security and usability. ... about this new partnership. "This marketing ...
(Date:5/3/2016)... May 3, 2016  Neurotechnology, a provider of ... MegaMatcher Automated Biometric Identification System (ABIS) , a ... projects. MegaMatcher ABIS can process multiple complex biometric ... combination of fingerprint, face or iris biometrics. It ... and MegaMatcher Accelerator , which have ...
Breaking Biology News(10 mins):
(Date:6/27/2016)... ... 2016 , ... Cancer experts from Austria, Hungary, Switzerland, and ... new and helpful biomarker for malignant pleural mesothelioma. Surviving Mesothelioma has just published ... , Biomarkers are components in the blood, tissue or body fluids that ...
(Date:6/27/2016)... 27, 2016  Liquid Biotech USA ... of a Sponsored Research Agreement with The University ... (CTCs) from cancer patients.  The funding will be ... correlate with clinical outcomes in cancer patients undergoing ... then be employed to support the design of ...
(Date:6/24/2016)... ... June 24, 2016 , ... While the majority of commercial ... Cary 5000 and the 6000i models are higher end machines that use the more ... the spectrophotometer’s light beam from the bottom of the cuvette holder. , FireflySci ...
(Date:6/23/2016)... , June 23, 2016   Boston Biomedical ... novel compounds designed to target cancer stemness pathways, ... been granted Orphan Drug Designation from the U.S. ... of gastric cancer, including gastroesophageal junction (GEJ) cancer. ... designed to inhibit cancer stemness pathways by targeting ...
Breaking Biology Technology: