Navigation Links
Plasticity of hormonal response permits rapid gene expression reprogramming
Date:5/15/2011

Gene expression is the process of converting the genetic information encoded in DNA into a final gene product such as a protein or any of several types of RNA. Scientists have long thought that the gene programs regulated by different physiological processes throughout the body are robustly pre-determined and relatively fixed for every specialized cell. But a new study by researchers from the University of California, San Diego School of Medicine reveals the unsuspected plasticity of some of these gene expression programs.

Their findings, to be published in the May 15 advanced on-line edition of journal Nature, show the existence of distinct regulated gene programs that can be alternatively induced, depending on the intracellular conditions. The study helps explain why, for example, the same signaling event such as cellular response to circulating hormones in the human body can be beneficial for normal development, but also becomes cancerous when combined with other genetic lesions.

The UCSD scientists found that the response to the hormone androgen in prostatic epithelial cells can be subject to dramatic reprogramming events that lead to alternative gene programs and profiles. They suggest that this plasticity could be the basis for development and progression of at least some forms of cancer, as well as for cell differentiation during development.

From a patient perspective, the results of this study may explain how hormonal therapy, applied to prostate cancer patients to block the pre-established, hormone-regulated tumor growth, escapes this treatment in a more malignant way.

"Aggressive cell types, such as those found in prostate cancer, basically learn to ignore the hormone therapy," said co-principal investigator Xiang-Dong Fu, PhD, professor in the UCSD Department of Cellular and Molecular Medicine, who collaborated with co-principal investigator Michael G. Rosenfeld, MD, professor in the UCSD Department of Medicine and a Howard Hughes Medical Institute investigator.

In this study, the UCSD researchers looked at the down-regulation in expression of a single transcription factor, FoxA1, an unfavorable sign in certain advanced prostate tumors. They present evidence that FoxA1, which is needed for normal prostatic development, can simultaneously facilitate and restrict the genomic binding of the receptor that controls the hormonal response. Consequently, down-regulation of FoxA1 triggers reprogramming of the hormonal response.

Interestingly, other cancer-associated events, such as specific AR genetic mutations, appear capable of inducing a similar effect. The subsequent massive switch in AR binding to a distinct cohort of pre-established regulatory elements in the human genome (called enhancers) is what may allow the cancer cells to "reprogram" themselves.

These findings suggest that therapies designed to stop the switch between different alternative gene programs may be more effective than simply blocking the hormonal response, according to co-first author Dong Wang, PhD and co-first author and co-principal investigator Ivan Garcia-Bassets, PhD, research assistant professor in the UCSD Division of Endocrinology and Metabolism, Department of Medicine.


'/>"/>

Contact: Debra Kain
ddkain@ucsd.edu
619-543-6163
University of California - San Diego
Source:Eurekalert

Related biology news :

1. Astrocytes and synaptic plasticity
2. Protein linked to mental retardation controls synapse maturation, plasticity, CSHL team finds
3. Ritalin boosts learning by increasing brain plasticity
4. New period of brain plasticity created with transplanted embryonic cells
5. Plasticity of plants helps them adapt to climate change
6. Breast cancer cells recycle to escape death by hormonal therapy
7. Major NSF grant boosts UNH research on hormonal genomics
8. The pill for him: Scientists find a hormonal on-and-off switch for male fertility
9. Soy germ-based supplement SE5-OH containing natural S-Equol examined for safety, hormonal influence
10. Hormonal contraceptives associated with higher risk of female sexual dysfunction
11. U of A researcher questions whether genius might be a result of hormonal influences
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:3/30/2017)... LOS ANGELES , March 30, 2017  On ... Hack the Genome hackathon at ... This exciting two-day competition will focus on developing health ... experience. Hack the Genome is ... has been tremendous. The world,s largest companies in the ...
(Date:3/27/2017)... N.Y. , March 27, 2017  Catholic ... Information and Management Systems Society (HIMSS) Analytics for ... EMR Adoption Model sm . In addition, CHS ... of U.S. hospitals using an electronic medical record ... for its high level of EMR usage in ...
(Date:3/22/2017)... 2017   Neurotechnology , a provider of ... announced the release of the SentiVeillance 6.0 ... facial recognition using up to 10 surveillance, security ... The new version uses deep neural-network-based facial detection ... utilizes a Graphing Processing Unit (GPU) for enhanced ...
Breaking Biology News(10 mins):
(Date:4/19/2017)... Ca (PRWEB) , ... April 18, 2017 , ... A ... technological advances. This webinar, which is part of the Protein and Cell Analysis ... Cytometer and outline where this technology fits in current and future applications. , ...
(Date:4/19/2017)... (PRWEB) , ... April 19, 2017 , ... ... $1.5M Series A-1 financing round. This event adds to several other early achievements ... its’ Executive and Scientific Teams. , ThermaGenix will use proceeds from ...
(Date:4/19/2017)... 2017  As a Bronze Sponsor of ... ,  Proove® Biosciences, Inc. announces the first-ever ... lifestyle factors to accurately predict prescription opioid abuse. In ... California (USC), the Interventional Pain Institute in ... showing that Proove Opioid Risk® accurately identifies patients ...
(Date:4/18/2017)... ... April 18, 2017 , ... METTLER TOLEDO Process Analytics announces ... and vice-versa. , One of the key applications for the measurement of electrolytic ... monitoring. The principle of this analytical method is based on pure salts and ...
Breaking Biology Technology: