Navigation Links
Pathway for membrane building blocks
Date:1/30/2013

The lipid molecules of membranes, also known as phospholipids, are composed of two elements: A hydrophilic head and two long-chain fatty acids. The molecules form a bilayer in the membrane, with all of the heads pointing outwards and the fatty acid chains hanging in a zip-like interlay position.

Biomembranes are constantly reorganized or renewed, for example whenever cells divide. The cell is constantly creating new phospholipids that have to align themselves which they do in both layers of the biomembrane. However, cells only produce phospholipids on one side of the biomembrane. From there, they need to be transported to the other half of the bilayer.

A helping hand through the membrane

The problem is that the hydrophilic and lipophilic parts of the molecule repel each other. "The molecules can anchor themselves in one of the two membrane layers with their lipophilic tail," explains Prof. Dieter Langosch of the TUM Chair of Biopolymer Chemistry. "Translocation to the second layer is not possible because the hydrophilic heads cannot pass through the lipophilic fatty acid chains."

The key to establishing order in the membranes lies in enzymes that transport the molecules to their correct location in the "second layer". Scientists have been searching for such enzymes known as flippases for many years. But now Prof. Langosch and his team have made a breakthrough. They experimented with synthetic peptides, which transport phospholipids through the membrane.

A clever trick

In this process, the researchers came across an indirect transport mechanism. The peptides span both layers of the membrane and are able to bind to individual phospholipids. Prof. Langosch explains: "When the peptides bind the molecules, the surrounding membrane is briefly destabilized. The new phospholipids use this opportunity to slip through the barrier of the first lipid layer and flip to the second layer of the membrane."

The researchers now have a clear idea of how flippases work. "Our peptides stretch through the membrane like a corkscrew. If this "alpha-helix" has dynamic elements, it can bind to phospholipids," says Prof. Langosch. "This model will help us to detect the flippases."


'/>"/>

Contact: Barbara Wankerl
wankerl@zv.tum.de
49-892-892-2562
Technische Universitaet Muenchen
Source:Eurekalert  

Related biology news :

1. UC Santa Barbara researchers discover genetic link between visual pathways of hydras and humans
2. Researchers uncover molecular pathway through which common yeast becomes fungal pathogen
3. Scientists win $2 million to study new pathway in development and maintenance of lymphoma
4. Study discovers genetic pathway impacting the spread of cancer cells
5. Researchers pinpoint genetic pathway of rare facial malformation in children
6. A new candidate pathway for treating visceral obesity
7. Study identifies pathway to enhance usefulness of EGFR inhibitors in lung cancer treatment
8. Cleveland Clinic researchers receive $5 million grant to discover novel pathways to heart disease
9. Fragile X and Down syndromes share signalling pathway for intellectual disability
10. New neural pathway controlling skeletal development discovered
11. Discovery of molecular pathway of Alzheimers disease reveals new drug targets
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
Pathway for membrane building blocks
(Date:4/5/2017)... Allen Institute for Cell Science today announces the launch ... dynamic digital window into the human cell. The website ... deep learning to create predictive models of cell organization, ... suite of powerful tools. The Allen Cell Explorer will ... resources created and shared by the Allen Institute for ...
(Date:4/4/2017)...   EyeLock LLC , a leader of iris-based ... Patent and Trademark Office (USPTO) has issued U.S. Patent ... an iris image with a face image acquired in ... 45 th issued patent. "The ... the multi-modal biometric capabilities that have recently come to ...
(Date:3/30/2017)... HONG KONG , March 30, 2017 ... developed a system for three-dimensional (3D) fingerprint identification by adopting ground ... technology into a new realm of speed and accuracy for use ... applications at an affordable cost. ... ...
Breaking Biology News(10 mins):
(Date:10/12/2017)... ... October 12, 2017 , ... ... of a complex biological network, a depiction of a system of linkages and ... Dmitry Korkin, PhD, associate professor of computer science at Worcester Polytechnic Institute (WPI) ...
(Date:10/12/2017)... , ... October 12, 2017 , ... ... Vilnius, Lithuania, announced today that they have entered into a multiyear collaboration to ... provide CRISPR researchers with additional tools for gene editing across all applications. , ...
(Date:10/12/2017)... ... October 12, 2017 , ... ... with the addition of its newest module, US Hemostats & Sealants. , SmartTRAK’s ... hemostats, absorbable hemostats, fibrin sealants, synthetic sealants and biologic sealants used in surgical ...
(Date:10/12/2017)... ... October 12, 2017 , ... ... analysis platform specifically designed for life science researchers to analyze and interpret ... Rosalind Franklin, who made a major contribution to the discovery of the ...
Breaking Biology Technology: