Navigation Links
Ozone's impact on soybean yield: Reducing future losses
Date:10/30/2012

URBANA - People tend to think of ozone as something in the upper atmosphere that protects the earth's surface from UV radiation. At the ground level, however, ozone is a pollutant that damages crops, particularly soybean.

Lisa Ainsworth, a University of Illinois associate professor of crop sciences and USDA Agricultural Research Service plant molecular biologist, said that establishing the exposure threshold for damage is critical to understanding the current and future impact of this pollutant.

"Most of my research is on measuring the effects of ozone on soybean, determining the mechanisms of response, and then trying to improve soybean tolerance to ozone so that we can improve soybean yields," she explained.

Ozone is highly reactive with membranes and proteins and is known to damage the human lung. It also harms plants, slowing photosynthesis and accelerating senescence. As a result, they take in and fix less carbon, reducing yield. Ainsworth said that ground level concentrations of ozone are already high enough to damage crop production.

"Ozone reacts very quickly once it enters the leaf through the stomata," she explained. "It can form other oxygen radicals and also hydrogen peroxide. Then a series of cascading reactions causes a decrease in photosynthesis, reducing stomata conductance."

The plant's response to ozone mimics a hypersensitive response to a pathogen attack. "At quite high concentrations of ozone, you can get leaf bronzing, stippling of the leaves, and necrotic spots," Ainsworth said. "At really high concentrations, you get cell death." The metabolic changes then feed forward to affect plant productivity.

Ainsworth's group conducted a two year study in 2009 and 2010 at the Soybean Free Air Concentration Enrichment (SoyFACE) facility at the U of I South Farms. It was the first dose-response experiment to look at ozone and soybean under completely open-air conditions.

They investigated the responses of seven different soybean genotypes to eight ozone concentrations. The plants were exposed to ozone concentrations ranging from ambient levels of 38 parts per billion up to 200 parts per billion. "This is quite high, but unfortunately, those kinds of concentrations are what very polluted areas of China and India are looking at today," Ainsworth said.

The researchers found that any increase above the ambient concentration was enough to reduce seed yield: roughly half a bushel per acre for each additional part per billion.

"This is significant," Ainsworth said. "Especially considering that background concentrations of ozone today vary year to year, anywhere from about 38 to 39 parts per billion to about 62. That can be 15 bushels per acre from one year to the next that farmers are losing to ozone." The researchers compared the results of this study, which used modern genotypes, with results from experiments conducted in controlled environments in the 1980s. They found that the responses of the modern genotypes were similar to those of the older genotypes.

"Breeders haven't inadvertently bred for ozone tolerance in more modern lines," Ainsworth said. "They're still sensitive to ozone, which means that farmers are still subject to these yearly variations in ozone and are losing yield accordingly."

Potential increases in background ozone are predicted to increase soybean yield losses by 9 to 19 percent by 2030. Levels were particularly high during this year's growing season because most days were sunny and warm, and thus they were favorable for ozone formation. Peaks on many days exceeded 80 parts per billion, twice the known sensitivity threshold.

The research was recently published online in Plant Physiology and can be accessed at http://www.plantphysiol.org/content/early/2012/10/04/pp.112.205591.abstract. Amy Betzelberger, Craig Yendrek, Jindong Sun, Courtney Leisner, Randall Nelson and Donald Ort are co-authors.


'/>"/>
Contact: Susan Jongeneel
sjongene@illinois.edu
217-333-3291
University of Illinois College of Agricultural, Consumer and Environmental Sciences
Source:Eurekalert

Related biology news :

1. Small organisms could dramatically impact worlds climate
2. University of Toronto study demonstrates impact of adversity on early life development
3. Feinstein Institute receives $1 million grant to study impact of World Trade Center attacks on responders
4. Carbon dioxide from water pollution, as well as air pollution, may adversely impact oceans
5. Effectiveness and impact of climate change mitigation measures unclear
6. Human impact felt on Black Sea long before industrial era
7. Study shows hope of greater global food output, less environmental impact of agriculture
8. New maps may reduce tourism impacts on Hawaiian dolphins
9. Study reveals impact of historical domestic cattle hybridization with American bison
10. New study helps predict impact of ocean acidification on shellfish
11. Stanford researchers calculate global health impacts of the Fukushima nuclear disaster
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:2/8/2017)... -- Report Highlights ... The global synthetic-biology market reached nearly $3.9 billion ... at a compound annual growth rate (CAGR) of 24.0% through ... markets for synthetic biology. - Analyses of global market trends, ... compound annual growth rates (CAGRs) through 2021. - Coverage of ...
(Date:2/7/2017)... , Feb. 7, 2017   MedNet Solutions , ... entire spectrum of clinical research, is pleased to announce ... , its innovative, highly flexible and award winning eClinical ... customers. iMedNet is a proven Software-as-a-Service (SaaS) ... Data Capture (EDC), but also delivers an entire suite ...
(Date:2/6/2017)... According to Acuity Market Intelligence, ongoing ... to continue to embrace biometric and digital identification ... Border Control (ABC) eGates and 1436 Automated Passport ... 163 ports of entry across the globe. Deployments ... combined CAGR of 37%. APC Kiosks reached 75% ...
Breaking Biology News(10 mins):
(Date:2/22/2017)... ... 22, 2017 , ... Kernel , a human intelligence ... (KRS) clinical development program. KRS is a neurotechnology spin-out from the Massachusetts ... applications. The terms of the transaction were not disclosed. , It addition ...
(Date:2/22/2017)... 22, 2017 Scientists propose in Nature ... damage in Gaucher and maybe other lysosomal storage diseases ... costs than current therapies. An international research ... , which also included investigators from the University of ... data Feb. 22. The study was conducted in mouse ...
(Date:2/22/2017)... ... February 22, 2017 , ... LabRoots , the leading ... the world, is pleased to announce the 2nd annual Precision Medicine Virtual Conference. ... online-only conference focused on the development and advancements in precision medicine. , Precision ...
(Date:2/22/2017)... 22, 2017 Origin (Origin Agritech, LLC, a subsidiary of ... provider, and Arcadia (Arcadia Biosciences, Inc., NASDAQ: ... commercializes agricultural productivity traits and nutritional products, today announced their collaboration ... developed in China to the ... ...
Breaking Biology Technology: