Navigation Links
Nitrogen from pollution, natural sources causes growth of toxic algae, study finds
Date:2/6/2013

SAN FRANCISCO, Feb. 6, 2013 -- Nitrogen in ocean waters fuels the growth of two tiny but toxic phytoplankton species that are harmful to marine life and human health, warns a new study published in the Journal of Phycology.

Researchers from San Francisco State University found that nitrogen entering the ocean -- whether through natural processes or pollution -- boosts the growth and toxicity of a group of phytoplankton that can cause the human illness Amnesic Shellfish Poisoning.

Commonly found in marine waters off the North American West Coast, these diatoms (phytoplankton cells) of the Pseudo-nitzschia genus produce a potent toxin called domoic acid. When these phytoplankton grow rapidly into massive blooms, high concentrations of domoic acid put human health at risk if it accumulates in shellfish. It can also cause death and illness among marine mammals and seabirds that eat small fish that feed on plankton.

"Regardless of its source, nitrogen has a powerful impact on the growth of phytoplankton that are the foundation of the marine food web, irrespective of whether they are toxic or not," said William Cochlan, senior research scientist at SF State's Romberg Tiburon Center for Environmental Studies. "Scientists and regulators need to be aware of the implications of both natural and pollutant sources of nitrogen entering the sea."

Nitrogen can occur naturally in marine waters due to coastal upwelling, which draws cool, nutrient-rich water containing nitrate (the most stable form of nitrogen) from deeper depths into sunlit surface waters. Pollution, including agricultural runoff containing fertilizer and effluent from sewage plants, is also responsible for adding nitrogen, including ammonium and urea, to ocean waters, but in most regions these types of nitrogen occur at relatively low concentrations.

In laboratory studies, Cochlan and former graduate student Maureen Auro found that natural and pollution-caused nitrogen forms equally support the growth of the harmful Pseudo-nitzschia algae and cause the production of the domoic acid, but in all cases the natural form of nitrogen caused the most toxic cells.

They also found that these small diatoms became particularly toxic under low light levels a condition that usually slows the growth of phytoplankton. The species, P. cuspidata, underwent an up to 50 fold increase in toxicity under low light levels compared to the conditions that are thought to normally favor phytoplankton growth.

Scientists already know that in some large-celled species of Pseudo-nitzschia their toxicity increases when the cells grow slower, but in previous studies the slowing of cellular growth was due to the limitation of vital nutrients, such as silicate. However Cochlan's latest study found that the toxicity of these small toxigenic diatoms is affected by the type of nitrogen they consume. He found that under low light levels -- leading to slow growth -- phytoplankton cells that were fed on naturally occurring nitrate were more toxic than cells that were fed on either urea or ammonium caused by pollution.

"Our results demonstrate that the reason for the growth of these specific harmful algal blooms off the coast of North America from British Columbia to California may in fact be due to totally natural causes," Cochlan said.

Such toxic algal blooms may be largely supported by the natural upwelling of nitrogen. However, Cochlan cautions that when the pattern of upwelling is weaker, nitrogen from pollution could play an important role in sustaining a "seed population" of harmful algae a remnant that keeps the bloom going until upwelling resumes and the bloom is able to grow again and perhaps increase their toxic effect on the marine ecosystem.

"This is the first physiological study to look at the environmental conditions that promote both the growth and the toxicity of these small diatoms," Cochlan said. "The findings may shed light on why these microorganisms produce a potent neurotoxin and what the ecological advantage is for the phytoplankton producing it."

"Nitrogen Utilization and Toxin Production by Two Diatoms of the Pseudo-nitzschia pseudodelicatissima complex: P. cuspidata and P. fryxelliana," was published in the February 2013 issue of the Journal of Phycology. The paper was authored by Maureen E. Auro, a graduate of the marine biology master's program at SF State, and William P. Cochlan, senior research scientist at SF State's Romberg Tiburon Center for Environmental Studies.


'/>"/>

Contact: Elaine Bible
ebible@sfsu.edu
415-405-3606
San Francisco State University
Source:Eurekalert  

Related biology news :

1. Lower nitrogen losses with perennial biofuel crops
2. Researchers to study impacts of pollutant nitrogen on plant species diversity
3. How much nitrogen is fixed in the ocean?
4. Scientists develop new carbon accounting method to reduce farmers use of nitrogen fertilizer
5. Nitrogen pollution changing Rocky Mountain National Park vegetation, says CU-Boulder-led study
6. Modern hybrid corn makes better use of nitrogen, study shows
7. Carbon dioxide from water pollution, as well as air pollution, may adversely impact oceans
8. Cut emissions further or face risks of high air pollution, study shows
9. Recreating natural complex gene regulation
10. Wallaces century-old map of natural world updated
11. New and revised standards for omega-3s, natural sweeteners and other food ingredients proposed
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
Nitrogen from pollution, natural sources causes growth of toxic algae, study finds
(Date:12/6/2016)... DALLAS , Dec. 6, 2016 ... criminal justice technology solutions for public safety, investigation, ... (PEP) jointly announced today a five (5) year ... exclusive agreement to expand the rehabilitation and reentry ... PEP History Established in 2004, the Prison ...
(Date:11/30/2016)... , Nov. 30, 2016 Not many of us realize that we ... of recovery so we need to do it well. Inadequate sleep levels have been ... blood pressure, stroke, diabetes, and even cancer. Maybe now is the best ... that could help them to manage their sleep quality? ... ...
(Date:11/29/2016)... Nearly one billion matches per second with DERMALOG,s high-speed AFIS    ... ... DERMALOG is Germany's largest Multi-Biometric supplier: The ... Identification Systems) ... Germany's largest Multi-Biometric supplier: The company's Fingerprint Identification System is part of ...
Breaking Biology News(10 mins):
(Date:12/9/2016)... ... December 09, 2016 , ... DuPont Industrial Biosciences ... the Breakthrough Solution of the Year Award from Platts Global Energy for ... The award was announced at the 18th Platts Global Energy Awards, held in ...
(Date:12/9/2016)... ALBANY, New York , December 9, 2016 /PRNewswire/ ... Research states that the top five players in the  ... of 62.7% in the overall market in 2015. Players ... and Perkin Elmer have remained dominant in the global ... persistent efforts to ensure product innovation. Product upgrades and ...
(Date:12/9/2016)... Dec. 9, 2016 China Cord Blood Corporation (NYSE: ... China,s leading provider of cord blood collection, laboratory ... today announced the results of its 2016 Annual General Meeting, ... S.A.R., China . At ... the re-appointment of KPMG Huazhen LLP as the independent auditors ...
(Date:12/9/2016)... India , December 9, 2016 According ... & Services (Primer, Probe, Custom, Predesigned, Reagent Equipment), Application (Research, PCR, ... Forecasts to 2021" published by MarketsandMarkets, the global market is expected ... in 2016, at a CAGR of 10.6% during the forecast period. ... ...
Breaking Biology Technology: