Navigation Links
Next-gen reappraisal of interactions within a cancer-associated protein complex

KANSAS CITY, MO- At a glance, DNA is a rather simple sequence of A, G, C, T bases, but once it is packaged by histone proteins into an amalgam called chromatin, a more complex picture emerges. Histones, which come in four subtypesH2A, H2B, H3, and H4can either coil DNA into inaccessible silent regions or untwist it to allow gene expression. To further complicate things, small chemical flags, such as methyl groups, affect whether histones silence or activate genes.

Among activator histones is a form of H3 decorated at a precise location (defined as H3K4) with three methyl groups (known as "H3K4me3"). Researchers knew previously that the presence of H2B exhibiting a single ubiquitin molecule stimulated the methylase that modifies H3K4, thereby increasing H3K4me3 levels. But how the methylase's activity was directed toward the appropriate targets had remained unclear.

Now, using biochemical, structural, and global sequencing techniques, researchers in the lab of Ali Shilatifard, Ph.D., an Investigator at the Stowers Institute for Medical Research, reveal an unanticipated mechanism underlying H3K4 trimethylation. Their study, published in the January 15, 2014 issue of Genes & Development, explains why H3K4me3 is deposited adjacent to a target gene promoter rather than haphazardly across the entire gene. This finding is significant because mutations in the human gene encoding the methylase responsible for H3K4me3 are associated with childhood leukemias, among other malignancies.

The work also illustrates the way powerful new genome-wide sequencing methodologies are impacting all molecular biology, including cancer research. "Here, we show that one cannot rely on methods that simply measure overall bulk H3K4me3 levels in vitro," says Shilatifard. "Only genome-wide sequencing could have revealed that H3K4 trimethylation was promoter-specific in non-mutant yeast."

This means that many assumptions about gene expression may need to be retested using next-generation approaches. "The old technologies were like observing just one region of the earth from a distant telescope in space and then making assumptions about what the entire earth looked like," Shilatifard says. "With new technologies, we can now see the whole planet."

The methylase in question, named SET1 in yeast and MLL in mammals, is part of a protein aggregate called COMPASS, for COMplex of Proteins ASsociated with Set1. Shilatifard was the first to define the role of COMPASS in chromatin modification. "Over a decade ago, our lab used yeast to show that COMPASS was an H3 methylase," he says. "Since these fundamental systems are highly conserved from yeast to Drosophila to humans, we took advantage of the awesome power of yeast genetics to identify what regulates H3K4 methylation activity."

Part of the paper addresses SET1/MLL regulation by different proteins within yeast COMPASS. Investigators knew that if you lopped off more than half of SET1's front end, levels of DNA-bound trimethylated H3K4 in cells harboring the remaining "stub" were equal to those in cells containing the full-length protein when analyzed in bulk. This led some to presume that the entire front end of SET1/MLL, as well as factors that interact with it, must not be needed to regulate H3K4me3 activity.

The new paper shows that this presumption was not correct. The Shilatifard team first employed biochemical methods to capture every piece of DNA bound to H3K4me3 in the genome of yeast harboring either full-length SET1 or the stub missing the front end. They then sequenced all of those DNA fragments and mapped their position in the yeast genome.

Significantly, they found that even though H3K4me3 levels in bulk were equivalent in normal and mutant cells, H3K4me3 was differentially distributed throughout the genome: in normal cells, H3K4me3 complexes sat primarily on DNA regions that switch adjacent genes on or off, control regions called promoters. By contrast, the DNA of cells harboring the stub exhibited DNA-binding H3K4me3 complexes in the middle of or between genes.

These discoveries, combined with other findings, call for re-interpretation of data suggesting that the stub is all you need for H3K4 trimethylation. Instead, the new work shows that COMPASS factors that bind to the SET1/MLL front end limit H3K4me3 deposition to the correct genomic sites (that is, to the promoter regions), while factors that bind the SET1/MLL stub increase the protein's half-life. This partially explains earlier misinterpretations: highly stable stubs of SET1 "promiscuously" methylated the wrong parts of the genome when the regulatory front end of the protein was missing. The paper also addressed how H2B ubiquitin modification machineries stimulate the entire process.

Understanding COMPASS regulation is essential, as genes encoding factors in the complex are mutant in numerous cancers. For example, chromosomal translocations involving a gene encoding one MLL protein occur frequently in human leukemias, hence the designation MLL, which stands for Mixed Lineage Leukemia protein. Other MLL proteins are strongly implicated as tumor suppressors in human cancers such as lymphoma and pediatric brain tumors.

Contact: Gina Kirchweger
Stowers Institute for Medical Research

Related biology news :

1. LABS, Inc. Launches Suite of Next-Generation Test Offerings; Focuses on Expanding Complex Biologic Testing Portfolio in 2012
2. Next-generation sequencing technology opens doors to discoveries
3. RIT leads development of next-generation infrared detectors
4. UT Dallas researchers awarded $4.3 million to create next-generation technologies
5. Marvin Test Solutions Demonstrates Next-Generation Armament Test Solutions at Paris Air Show
6. Droplet Digital™ PCR provides accurate quantification of next-generation sequencing libraries
7. Next-gen sequencing identifies genes associated with speech disorder
8. TGen-led research shows ability to do next-generation sequencing for patients with advanced cancers
9. Next-generation global e-infrastructure for taxon names registry
10. Allen Institute for Brain Science partners with imec for development of next-generation tools
11. Sanford-Burnham receives US Air Force grant to perform next-generation toxicity screens
Post Your Comments:
Related Image:
Next-gen reappraisal of interactions within a cancer-associated protein complex
(Date:11/17/2015)... 2015 Paris from 17 ... Paris from 17 th until 19 ... innovation leader, has invented the first combined scanner in the ... same scanning surface. Until now two different scanners were required: one ... capture both on the same surface. This innovation is ...
(Date:11/17/2015)... 2015  Vigilant Solutions announces today that Mr. ... Directors. --> --> ... the partnership at TPG Capital, one of the largest ... Billion in revenue.  He founded and led TPG,s Operating ... companies, from 1997 to 2013.  In his first role, ...
(Date:11/16/2015)... 16, 2015  Synaptics Inc. (NASDAQ: SYNA ... today announced expansion of its TDDI product portfolio ... controller and display driver integration (TDDI) solutions designed ... new TDDI products add to the previously-announced ... (WQHD resolution), and TD4322 (FHD resolution) solutions. All ...
Breaking Biology News(10 mins):
(Date:12/1/2015)...  Twist Bioscience, a company focused on synthetic DNA, today ... been selected as one of Foreign Policy,s 100 ... blocks of life . Each year, Foreign Policy ... work have changed lives and are shaping the world. ... honor to be recognized among these incredible global leaders," said ...
(Date:12/1/2015)... 2015  The Minnesota High Tech Association (MHTA) has ... Award in the Small and Growing Healthcare award category. ... Minneapolis Convention Center, the Tekne Awards honor ... in developing new technologies that positively impact the lives ... Clostridium difficile infection ( C. diff. ), ...
(Date:12/1/2015)... (PRWEB) , ... December 01, 2015 , ... ... (AFM) announces Park NX10 SICM Module, an add-on scanning ion conductance microscopy module ... power of SICM to an AFM. , Park SICM benefits virtually all materials ...
(Date:12/1/2015)... , Dec. 1, 2015  Symic, a clinical-stage ... the extracellular matrix (ECM), today announced that it has ... advance the company,s pipeline, including its lead candidates SB-030 ... and includes the participation by all existing major investors, ... brings the total capital raised by Symic to over ...
Breaking Biology Technology: