Navigation Links
New research traces evolutionary path of multidrug-resistant strep bacteria
Date:1/28/2011

Despite penicillin and the dozens of antibiotics that followed it, streptococcus bacteria have remained a major threat to health throughout the world. The reason: the superb evolutionary skills of this pathogen to rapidly alter its genetic makeup. In a landmark paper published this week in Science, scientists from Rockefeller University and the Sanger Institute have used full genome sequencing to identify the precise steps in the molecular evolution of Streptococcus pneumoniae. Their research shows the changes the genome of this bacterium has undergone in time and during its massive geographic spread over the globe.

According to the World Health Organization, fatal pneumococcal disease mostly among children from underdeveloped countries claims an estimated 4 million casualties per year. Humans are not only the primary targets of pneumococcal disease but also represent the major and possibly the only ecological reservoir on our planet for this bacterial species, which colonizes the nasopharynx of preschool age children.

The researchers, led by the Sanger Institute's Stephen D. Bentley, used high resolution genome sequencing on clinical isolates of S. pneumoniae provided by a number of collaborating laboratories, including the Laboratory of Microbiology and Infectious Diseases at Rockefeller University, headed by Alexander Tomasz. With data available for the date, geographic site and infection site of these isolates, Bentley and colleagues were able to produce a roadmap for the evolution of a major multidrug resistant clones of pneumococci known as the PMEN clone 1, sequence type 81.

The scientists pinpointed the probable date of birth, 1970, and the likely birthplace, Europe, of this extremely successful multidrug resistant clone. The clone then spread to South and North America, South Africa and Asia. The presence of this clone in 12 New York City hospitals was demonstrated by Tomasz's group in 2001. Perhaps more importantly, the findings provide evidence that the mechanism of genetic change in S. pneumoniae is primarily not through acquisition of point mutations but more often 88 percent of the time through genetic recombination.

"The phenomenon of genetic transformation, which led Oswald Avery and his Rockefeller colleagues in 1944 to identify DNA as the genetic material, is the very process that Streptococcus pneumoniae uses during evolution in its real in vivo environment," says Tomasz.

Other phenomena first identified in the laboratory also appear in stages of pneumococcal evolution in vivo. For instance, at least some of the recombination changes observed among the clinical isolates seem to use the "competence" system, a DNA uptake mechanism induced by a specific bacterial quorum sensing agent first detected by Tomasz and colleagues in laboratory experiments. Also, the mechanism of penicillin resistance, first identified by Tomasz and colleagues in the 1980s as changes in the affinity of penicillin target proteins known as penicillin binding proteins, or PBPs, is shown to involve the borrowing of genes from other bacteria, a finding previously documented in studies of individual penicillin resistant isolates.

"Perhaps the most fascinating part of the research is the description of how rapidly this clone has responded to massive in vivo interventions in the clinical environment, such as the introduction of penicillin and other antibiotics and more recently the introduction of conjugate anti-pneumococcal vaccines," says Tomasz. "These vaccines are directed against the most abundant serotypes of this bacterium, which are carried in the nasopharynx of children and which cause invasive disease."

"This research also demonstrates the importance of close collaborations between groups like the Sanger Laboratory, with expertise in high resolution genomic analysis, and laboratories that can provide carefully characterized collections of bacterial isolates, such as ours. This type of collaboration fits well with the Rockefeller University's tradition of engaging in studies that combine clinical with translational science," says Tomasz. "Such an alliance between molecular biology and epidemiology promises further interesting insights into the mechanism of bacterial evolution in vivo. It may ultimately allow us to understand PMEN-1's secret of success to learn why this clone was able to spread so widely while others died off."


'/>"/>

Contact: Joseph Bonner
bonnerj@rockefeller.edu
212-327-8998
Rockefeller University
Source:Eurekalert

Related biology news :

1. Cold cases gone hot: Montreal researchers solve decades-old medical mysteries using genetics
2. Breakthrough on cystic fibrosis 1 step closer as new research alliance formed
3. Researchers identify biomarkers of poor outcomes in preemies
4. Research suggests HIV causes rapid aging in key infection-fighting cells
5. President Obama calls for increased investment in science, including biomedical research
6. Researchers register new species using DNA-based description
7. 23andMe sarcoma research community reaches 500 and announces Sarcoma Scientific Advisory Committee
8. Purdue team creates engineered organ model for breast cancer research
9. Blue crab research may help Chesapeake Bay watermen improve soft shell harvest
10. Research into synthetic antibodies offers hope for new diagnostics
11. ASM Biodefense and Emerging Diseases Research Meeting
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:3/21/2016)... March 22, 2016 Unique ... passcodes for superior security   ... provider of secure digital communications services, today announced it ... and offer enterprise customers, particularly those in the Financial ... and voice authentication within a mobile app, alongside, and ...
(Date:3/14/2016)... NXTD ) ("NXT-ID" or the "Company"), ... the airing of a new series of commercials on Time ... 21 st .  The commercials will air on Bloomberg TV, ... the Street show. --> NXTD ) ("NXT-ID" or ... market, announces the airing of a new series of commercials ...
(Date:3/10/2016)... Pa. , March 10, 2016   Unisys Corporation ... Customs and Border Protection (CBP) is testing its biometric ... San Diego to help identify certain non-U.S. ... . The test, designed to help determine the efficiency ... environment, began in February and will run until May 2016. ...
Breaking Biology News(10 mins):
(Date:5/4/2016)... ... May 05, 2016 , ... CereScan, the nation’s leader ... Association during National Stroke Awareness Month in May. An infographic created by ... month. CereScan will donate $1 up to a maximum of $3,000 through ...
(Date:5/4/2016)... ... May 04, 2016 , ... The Children’s Tumor Foundation announced its annual ... to grow on nerves throughout the body. It affects 1 in 3,000 people of ... held during the month of May, as well as online activities, Neurofibromatosis Awareness Month ...
(Date:5/3/2016)... , May 3, 2016 ... Chip (Genomics, Drug Discovery, Gene Expression) Lab-on-a-chip ... user (Academics Institutes, Diagnostics Centers), Fabrication Technology ... by MarketsandMarkets, the market is expected to ... USD 7.63 Billion in 2015, growing at ...
(Date:5/3/2016)... ... 03, 2016 , ... Flagship Biosciences, the leader in ... Board of Directors. Dr. Gillett recently retired from Charles River Laboratories (CRL), where, ... Scientific Officer. A board-certified veterinary pathologist, Dr. Gillett joined Charles River in 1999 ...
Breaking Biology Technology: