Navigation Links
New research suggests that obesity and diabetes are a downside of human evolution
Date:2/24/2011

As if the recent prediction that half of all Americans will have diabetes or pre-diabetes by the year 2020 isn't alarming enough, a new genetic discovery published online in the FASEB Journal (http://www.fasebj.org) provides a disturbing explanation as to why: we took an evolutionary "wrong turn." In the research report, scientists show that human evolution leading to the loss of function in a gene called "CMAH" may make humans more prone to obesity and diabetes than other mammals.

"Diabetes is estimated to affect over 25 million individuals in the U.S., and 285 million people worldwide," said Jane J. Kim, M.D., a researcher involved in the work from the Department of Pediatrics at the University of California, San Diego in La Jolla, CA. "Our study for the first time links human-specific sialic acid changes to insulin and glucose metabolism and therefore opens up a new perspective in understanding the causes of diabetes."

In this study, which is the first to examine the effect of a human-specific CMAH genetic mutation in obesity-related metabolism and diabetes, Kim and colleagues show that the loss of CMAH's function contributes to the failure of the insulin-producing pancreatic beta cells in overweight humans, which is known to be a key factor in the development of type 2 diabetes. This gene encodes for an enzyme present in all mammalian species except for humans and adds a single oxygen atom to sialic acids, which are sugars that coat the cell surface.

To make their discovery, the researchers used two groups of mice. The first group had the same mutant CMAH gene found in humans. These mice demonstrated that the CMAH enzyme was inactive and could not produce a sialic acid type called NeuSGc at the cell surface. The second group had a normal CMAH gene. When exposed to a high fat diet, both sets of mice developed insulin resistance as a result of their obesity. Pancreatic beta cell failure, however, occurred only in the CMAH mutant mice that lacked NeuSGc, resulting in a decreased insulin production, which then further impaired blood glucose level control. This discovery may enhance scientific understanding of why humans may be particularly prone to develop type 2 diabetes. Results may also suggest that conventional animal models may not accurately mirror the human situation.

"The diabetes discovery is an important advance in its own right. It tells us a lot about what goes wrong in diabetes, and where to aim with new treatments," said Gerald Weissmann, M.D., Editor-in-Chief of the FASEB Journal, "but its implications for human evolution are even greater. If this enzyme is unique to humans, it must also have given us a survival advantage over earlier species. Now the challenge is to find the function of CMAH in defending us against microbes or environmental stress or both. This evolutionary science explains how we can win some and lose some, to keep our species ahead of the extinction curve."


'/>"/>

Contact: Cody Mooneyhan
cmooneyhan@faseb.org
301-634-7104
Federation of American Societies for Experimental Biology
Source:Eurekalert

Related biology news :

1. Researcher lists more than 4,000 components of blood chemistry
2. Cleveland Clinic researchers honored for contributions to science and technology
3. UT researchers crack code to harmful brown tides
4. Albert Einstein College of Medicine geneticist wins Sloan Research Fellowship
5. Nanowire research at Stevens makes cover of Applied Physics Letters
6. Iowa State, Ames Lab researchers describe the pump that bacteria use to resist drugs
7. Researchers achieve a full film frame of a family of proteins essential for cell function
8. Researchers find local wildlife protection safeguards entire range
9. Elsevier and the Arabidopsis Information Resource connect research articles
10. Stanford researchers develop new technology for cheaper, more efficient solar cells
11. Tip sheet: Caltech researchers presenting at AAAS
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:4/3/2017)...  Data captured by IsoCode, IsoPlexis Corporation,s ... statistically significant association between the potency of ... objective response of cancer patients post-treatment. The ... cancer patients will respond to CAR-T cell ... to improve both pre-infusion potency testing and cell ...
(Date:3/30/2017)... The research team of The Hong Kong Polytechnic University (PolyU) ... ground breaking 3D fingerprint minutiae recovery and matching technology, pushing contactless ... use in identification, crime investigation, immigration control, security of access and ... ... A research team led by Dr Ajay Kumar ...
(Date:3/29/2017)... 29, 2017  higi, the health IT company that ... North America , today announced a Series B ... of EveryMove. The new investment and acquisition accelerates higi,s ... to transform population health activities through the collection and ... higi collects and secures data today on behalf ...
Breaking Biology News(10 mins):
(Date:10/12/2017)... ... October 12, 2017 , ... AMRI, a global ... industries to improve patient outcomes and quality of life, will now be offering ... being attributed to new regulatory requirements for all new drug products, including the ...
(Date:10/11/2017)... ... October 11, 2017 , ... The ... context, enabling overexpression experiments and avoiding the use of exogenous expression plasmids. The ... transformative for performing systematic gain-of-function studies. , This complement to loss-of-function studies, ...
(Date:10/11/2017)... ... October 11, 2017 , ... Proscia ... be hosting a Webinar titled, “Pathology is going digital. Is your lab ready?” ... pathology adoption best practices and how Proscia improves lab economics and realizes an ...
(Date:10/11/2017)... (PRWEB) , ... October 11, 2017 , ... Disappearing forests ... the lives of over 5.5 million people each year. Especially those living in larger ... startup Treepex - based in one of the most pollution-affected countries globally - decided ...
Breaking Biology Technology: