Navigation Links
New pump created for microneedle drug-delivery patch
Date:9/1/2010

WEST LAFAYETTE, Ind. - Purdue University researchers have developed a new type of pump for drug-delivery patches that might use arrays of "microneedles" to deliver a wider range of medications than now possible with conventional patches.

The current "transdermal" patches are limited to delivering drugs that, like nicotine, are made of small hydrophobic molecules that can be absorbed through the skin, said Babak Ziaie, a professor of electrical and computer engineering and biomedical engineering.

"There are only a handful of drugs that currently can be administered with patches," he said. "Most new drugs are large molecules that won't go through the skin. And a lot of drugs, such as those for treating cancer and autoimmune disorders, you can't take orally because they aren't absorbed into the blood system through the digestive tract."

Patches that used arrays of tiny microneedles could deliver a multitude of drugs, and the needles do not cause pain because they barely penetrate the skin, he said.

"It's like a bandage - you would use it and discard," Ziaie said.

The patches require a pump to push the drugs through the narrow needles, which have a diameter of about 20 microns, or roughly one-fourth as wide as a human hair. However, pumps on the market are too complex for patches, he said.

"We have developed a simple pump that's activated by touch from the heat of your finger and requires no battery," Ziaie said.

The pump contains a liquid that boils at body temperature so that the heat from a finger's touch causes it to rapidly turn to a vapor, exerting enough pressure to force drugs through the microneedles.

"It takes 20 to 30 seconds," Ziaie said.

The liquid is contained in a pouch separated from the drug by a thin membrane made of a rubberlike polymer, called polydimethylsiloxane, which is used as diaphragms in pumps.

Research findings are detailed in a paper being presented during the 14th International Conference on Miniaturized Systems for Chemistry and Life Sciences on Oct. 3-7 at University of Groningen in The Netherlands. The paper was written by electrical and computer engineering doctoral students Charilaos Mousoulis and Manuel Ochoa and Ziaie.

Researchers have filed an application for a provisional patent on the device.

Ziaie has tested prototypes with liquids called fluorocarbons, which are used as refrigerants and also in semiconductor manufacturing.

"You need a relatively large force, a few pounds per square inch, to push medications through the microneedles and into the skin," Ziaie said. "It's very difficult to find a miniature pump that can provide that much force."

Findings indicate prototypes using the fluorocarbon HFE-7000 exerted 4.87 psi and another fluorocarbon, FC-3284, exerted 2.24 psi.


'/>"/>

Contact: Emil Venere
venere@purdue.edu
765-494-4709
Purdue University
Source:Eurekalert  

Related biology news :

1. A lab rat -- created in the lab
2. Smart orthopedic implants and self-fitting tissue scaffolding created by UMMS researchers
3. Alzheimers rat created for human research
4. New period of brain plasticity created with transplanted embryonic cells
5. MSU scientists unlock key enzyme using newly created cool method
6. 3-D kidney atlas created for researchers and physicians
7. Most extensive genetic resource for reef-building coral created
8. Microneedle, quantum dot study opens door to new clinical cancer tools
9. Ocean stirring and plankton patchiness
10. Even small patches of urban woods are valuable for migrating birds
11. Ancient artifacts reveals as northern ice patches melt
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
New pump created for microneedle drug-delivery patch
(Date:4/4/2017)...   EyeLock LLC , a leader of iris-based ... Patent and Trademark Office (USPTO) has issued U.S. Patent ... an iris image with a face image acquired in ... 45 th issued patent. "The ... the multi-modal biometric capabilities that have recently come to ...
(Date:3/30/2017)... , March 30, 2017 The research team ... for three-dimensional (3D) fingerprint identification by adopting ground breaking 3D fingerprint ... new realm of speed and accuracy for use in identification, crime ... affordable cost. ... A ...
(Date:3/28/2017)... 28, 2017 The report "Video ... Monitors, Servers, Storage Devices), Software (Video Analytics, VMS), and ... Global Forecast to 2022", published by MarketsandMarkets, the market ... is projected to reach USD 75.64 Billion by 2022, ... The base year considered for the study is 2016 ...
Breaking Biology News(10 mins):
(Date:8/10/2017)... ... 09, 2017 , ... Each year in the United States more than 300,000 ... an independent lifestyle and, even worse, the one-year mortality rate is high, ranging from ... University of California Davis Medical Center (Sacramento) and Second Xiangya Hospital of the Central-South ...
(Date:8/10/2017)... ... August 09, 2017 , ... SPIE, the international society for ... Wellman Center for Photomedicine, the Manstein Lab in the Cutaneous Biology Research Center ... at University of California, Irvine — and the Hillenkamp family to establish the ...
(Date:8/10/2017)... USA, and CARDIFF, UK (PRWEB) , ... August ... ... and photonics, has announced an agreement establishing Kinokuniya Company Ltd. as its exclusive ... SPIE as the exclusive sales representative for the SPIE Digital Library in Japan. ...
(Date:8/10/2017)... ... August 10, 2017 , ... BellBrook Labs announces the launch ... an enabling new high throughput screening (HTS) assay to aid researchers in their ... diseases. , Chemical modification of gene expression, also known as epigenetics, is perhaps ...
Breaking Biology Technology: