Navigation Links
New paper examines poison resistance in snakes around the world
Date:3/19/2012

A new study by University of Notre Dame biologist Michael Pfrender and a team of researchers from the University of Nevada-Reno, Utah State University and the University of Virginia suggests that snakes from different regions of the world have evolved a similar, remarkable resistance to a deadly neurotoxin.

The finding, which appeared in the Proceedings of the National Academy of Sciences, greatly increases scientists' understanding of the genetic basis of adaptation and is a model for understanding the limits to adaptation and the degree to which evolutionary responses are predictable.

Pfrender and colleagues found that species of snakes in North, Central and South America and Asia that are able to feed on amphibians that secrete a deadly neurotoxic poison, tetrodotoxin or TTX. These snakes have similar mutations in a key sodium-channel gene that makes them highly resistant to TTX. These mutations prevent TTX from blocking the sodium channels in muscle, which would otherwise immobilize the snakes by paralyzing nervous and muscle tissue.

"The key finding is that adaptive evolution is constrained by the functional properties of the genes involved in these evolutionary responses," Pfrender said. "While there are many possible mutations that can improve fitness, in this case resistance to the neurotoxin TTX, many of these mutations have a cost because they change the normal function of the genes. So, when we look at multiple species that have independently adapted to TTX, we see a very similar, and limited, set of mutations involved. The story is one of repeated evolutionary change that occurs through a limited set of changes at the molecular level."

The study stems from Pfrender's interest in understanding how organisms deal with environmental change through adaptive evolution.

"We would like to know what the underlying genetic mechanisms are, and what the limits are to these adaptive responses," he said. "Ultimately, we would like to develop a predictive framework to gauge when natural populations will be able to evolve rapidly enough to persist in a changing environment and when the environmental change is too fast or too strong, leading to local extinction."

An understanding of how organisms deal with environmental change is relevant to the major themes of Notre Dame's Environmental Change Initiative and to the Eck Institute for Global Health, which examines disease resistance coupled with human health.

"Many organisms are exposed to toxic chemicals in their environment and this system is a model for understanding how they cope with this challenge through evolutionary change," Pfrender said. "A good example of the application of this knowledge is when we are trying to understand how parasites acquire drug resistance. How do they do it and what are the limits to this response? Can we create more effective drug strategies that capitalize on these functional constraints making it more difficult for parasites to evolve resistance?"

Pfrender and the Utah State researchers plan to study more snake species and to expand their research to a number of other species, including insects that prey on the toxic eggs of salamanders. They also are examining other genes closely related to the sodium channel genes that are the focus of the PNAS study to expand their understanding of how adaptation occurs.


'/>"/>

Contact: Michael Pfrender
Michael.Pfrender.1@nd.edu
574-631-0591
University of Notre Dame
Source:Eurekalert

Related biology news :

1. New papers offer insights into process of malarial drug resistance
2. French scientist wins the Journal of Experimental Biology Outstanding Paper Prize
3. High school students paper published in prestigious college math journal
4. HSPD-24 White Paper Now Available From WCC Smart Search & Match
5. New paper offers key insights into how new species emerge
6. Researchers win award for best clinical paper in orthopedic physical therapy
7. GSA special paper presents new studies of Western US earth motion
8. Beetle shell inspires brilliant white paper
9. ADA releases updated position paper on vegetarian diets
10. ADA releases position paper on food and water safety
11. Lower-cost solar cells to be printed like newspaper, painted on rooftops
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:11/29/2016)... Nearly one billion matches per second with DERMALOG,s high-speed AFIS    ... ... DERMALOG is Germany's largest Multi-Biometric supplier: The company's Fingerprint ... ... Multi-Biometric supplier: The company's Fingerprint Identification System is part of an efficient ...
(Date:11/21/2016)... VILNIUS, Lithuania , Nov. 21, 2016 /PRNewswire/ ... identification and object recognition technologies, today announced that ... for smart cards was submitted for the ... and successfully passed all the mandatory steps of ... III evaluation is a continuing test of fingerprint ...
(Date:11/15/2016)... , Nov. 15, 2016  Synthetic Biologics, Inc. ... therapeutics focused on the gut microbiome, today announced ... 25,000,000 shares of its common stock and warrants ... at a price to the public of $1.00 ... Synthetic Biologics from the offering, excluding the proceeds, ...
Breaking Biology News(10 mins):
(Date:12/8/2016)... , ... December 08, 2016 , ... ... FrontPanel SDK that provide essential device-to-computer interconnect using USB or PCI Express, announced ... FrontPanel support. The FOMD-ACV-A4 is a small, thin, SODIMM-style module that fits a ...
(Date:12/8/2016)... , ... December 08, 2016 ... ... the commercial launch of flexible packaging for their exceptionally efficient human mesenchymal ... system extends RoosterBio’s portfolio of bioprocess media products engineered to radically streamline ...
(Date:12/8/2016)... Fla. , Dec. 8, 2016  HedgePath ... company that discovers, develops and plans to commercialize ... its shares of common stock were approved for ... will begin trading on the OTCQX, effective today, ... qualify for the OTCQX market, companies must meet ...
(Date:12/7/2016)... , ... December 07, 2016 , ... ... its phase I/II dose escalation and expansion clinical trial for its lead drug ... Austria. The purpose of the trial was to determine the safety, antitumor activity, ...
Breaking Biology Technology: