Navigation Links
New low-cost, nondestructive technology cuts risk from mercury hot spots
Date:10/25/2013

Hot spots of mercury pollution in aquatic sediments and soils can contaminate local food webs and threaten ecosystems, but cleaning them up can be expensive and destructive. Researchers from the Smithsonian Environmental Research Center and University of Maryland, Baltimore County have found a new low-cost, nonhazardous way to reduce the risk of exposure: using charcoal to trap it in the soil.

Mercury-contaminated "Superfund sites" contain some of the highest levels of mercury pollution in the U.S., a legacy of the many industrial uses of liquid mercury. But despite the threat, there are few available technologies to decrease the risk, short of digging up the sediments and burying them in landfillsan expensive process that can cause significant ecological damage.

In a new study published in the journal Environmental Science & Technology, Cynthia Gilmour (SERC), Upal Ghosh (UMBC) and their colleagues show that adding activated carbon, a form of charcoal processed to increase its ability to bind chemicals, can significantly reduce mercury exposure in these highly contaminated sites. With funding and support from several industry and federal partners, the team tested the technology in the laboratory with mercury-contaminated sediments from four locations: a river, a freshwater lake and two brackish creeks. To reduce the harm from mercury, the sorbents also had to decrease the amount of methylmercury taken up by worms.

"Methylmercury is more toxic and more easily passed up food webs than inorganic mercury," said Gilmour, the lead author on the study. "Unfortunately, methylmercury is produced from mercury contamination by natural bacteria. To make contaminated sites safe again, we need to reduce the amount of methylmercury that gets into animals."

Added at only 5 percent of the mass of surface sediments, activated carbon reduced methylmercury uptake by sediment-dwelling worms by up to 90 percent. "This technology provides a new approach for remediation of mercury-contaminated soilsone that minimizes damage to contaminated ecosystems, and may significantly reduce costs relative to digging or dredging," said Ghosh, co-author on the study. Activated carbon can be spread on the surface of a contaminated sediment or soil, without physical disturbance, and left in place to mix into the sediment surface. Called "in-situ remediation," the use of sorbents like activated carbon has been proven to reduce the uptake of several other toxic pollutants. However, this is the first time activated carbon had been tested for mercury-contaminated soils.

The research group is now testing its effectiveness in the field at several Superfund sites across the country. If successful in the field, this approach of treating soil with activated carbon may be able to reduce the risk of mercury exposure in polluted sites and subsequent contamination of food webs.


'/>"/>

Contact: Kristen Minogue
minoguek@si.edu
443-482-2325
Smithsonian
Source:Eurekalert  

Related biology news :

1. Bio-Rads Droplet Digital PCR technology highlighted at ASHG Annual Meeting
2. Laser technology sorting method can improve Capsicum pepper seed quality
3. NTU scientists make breakthrough solar technology
4. Beaumont named to 2013 InformationWeek 500 list of top technology innovators
5. Cytos Biotechnology Presents Additional Results From Phase 2a Study of CYT003 for the Treatment of Allergic Asthma
6. New NIH awards focus on nanopore technology for DNA sequencing
7. Biometrics & Technology Sector Leaders Briefing: NXT-ID, Intel, Sony, Facebook, Dell
8. Journal of Spinal Cord Medicine publishes special issue on assistive technology
9. Techne Corporation Appoints Dr. J. Fernando Bazan As Chief Technology Officer
10. Neurotechnology Announces NCheck Bio Attendance 2.0 Biometric Time and Attendance Software
11. Iris Biometrics Leader, EyeLock, Redefines Identity Authentication, Announces Availability of Software Development Kit to Accelerate Deployment of Technology
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
New low-cost, nondestructive technology cuts risk from mercury hot spots
(Date:3/15/2016)... 2016 Yissum Research Development Company of ... of the Hebrew University, announced today the formation of ... of various human biological indicators. Neteera Technologies has completed ... private investors. ... of electromagnetic emissions from sweat ducts, enables reliable and ...
(Date:3/14/2016)... March 14, 2016 http://www.apimages.com ... --> - Renvoi : image disponible via ... --> --> DERMALOG, le ... de nouveaux lecteurs d,empreintes digitales pour l,enregistrement des ... sera utilisé pour produire des cartes d,identité aux ...
(Date:3/11/2016)... India , March 11, 2016 ... a new market research report "Image Recognition Market by ... Application (Marketing and Advertising), by Deployment Type (On-Premises and ... Forecast To 2022", published by MarketsandMarkets, the global market ... 2015 to USD 29.98 Billion by 2020, at a ...
Breaking Biology News(10 mins):
(Date:5/26/2016)... ... May 26, 2016 , ... After ... Panama Inc. at the City of Knowledge in Panama, a 6 year-old ... in the US earlier this year following FDA approval of a second application ...
(Date:5/25/2016)... ... May 25, 2016 , ... The Ankle Plating ... options designed to address fractures of the distal tibia and fibula. This system ... Ankle Plating System 3 is composed of seven plate families that span the ...
(Date:5/25/2016)... ... May 25, 2016 , ... Lady had been battling arthritis ... cruciate ligament in her left knee. Lady’s owner Hannah sought the help of Dr ... veterinary surgeon, to repair her cruciate ligament and help with the pain of Lady’s ...
(Date:5/24/2016)... ... May 24, 2016 , ... Media Cybernetics, global image analysis ... corporate branding reflects a results-driven revitalization for a company with a renewed focus ... include a crisp, refreshed logo and a new web presence. , “I believe ...
Breaking Biology Technology: