Navigation Links
New imaging advance illuminates immune response in breathing lung
Date:12/20/2010

Fast-moving objects create blurry images in photography, and the same challenge exists when scientists observe cellular interactions within tissues constantly in motion, such as the breathing lung. In a recent UCSF-led study in mice, researchers developed a method to stabilize living lung tissue for imaging without disrupting the normal function of the organ. The method allowed the team to observe, for the first time, both the live interaction of living cells in the context of their environment and the unfolding of events in the immune response to lung injury.

The finding impacts disease research, the authors say, because the ability to image the lung and other organs with minimum tissue disruption allows scientists to look deeper into the many physiological aspects of injury and diseases like diabetes or cancer.

"The nature of disease is complex, so if scientists can observe in real-time what's happening in tumors or immune responses as they occur, we can find new ways to intervene," said senior author Max Krummel, PhD, UCSF associate professor of Pathology, whose lab developed the new imaging technique for seeing minute details of cellular interaction in tissues.

"We figured out a method for holding cells still enough to image them without interrupting their normal processes. This enabled us to observe cellular events as they happen naturally rather than the usual way, which is to stop the motion of cellular processes in order to photograph them."

The research, published online this week in Nature Methods, includes videos of these immune cell interactions: http://www.nature.com/nmeth/journal/vaop/ncurrent/full/nmeth.1543.html.

To achieve such clear imaging of the fast-moving lung cells, the team developed a custom rig device that applies a gentle amount of suction to the tissue surface, holding the region for viewing inside the range of their microscope. They then used super-fast imaging with a two-photon microscope to photograph the tissue. Footage was taken 30 times each second, revealing the full progression of cellular participants involved in different biological processes for example: which cells worked together to mount a response to an injury. With that information, the team was able to identify the function of different cell types.

The fast, two-photon microscopy technique previously was developed by the team to monitor immune cells in the lymph nodes and other biological processes. Two-photon microscopy is a light-based high-resolution imaging technology using infrared pulsed lasers to penetrate deep into tissue layers, capturing details as small as one micron (or one ten-thousandth of a centimeter) in diameter. The study uses custom-built microscopes that the team constructed on-site at UCSF.

With more than 20 previously published articles using microscopy, the team is focused on continuing to improve the ability to observe molecules and cells deep within tissues.

Mark R. Looney, MD

"Imaging tissues or organs is ideally done within the living organism and as noninvasively as possible, but there are many challenges," said Mark R. Looney, MD, co-first author and assistant professor in Medicine and Laboratory Medicine at UCSF.

"Light is absorbed and scattered as it passes through tissue, which degrades image quality. And even anesthetized animals have vascular and respiratory movements, complicating the imaging of dynamic processes. Many of these problems are exacerbated in the lung," said Emily Thornton, co-first author and a graduate student in Krummel's laboratory.

Although the lung is a challenging organ to image, it is the site of several important biological functions useful in the study of diseases. For instance, the lung is where the body's internal systems encounter the outside environment through the inhalation of air, allergens, toxins and pathogens. The lung also is in constant contact with inhaled air and with circulating blood cells.

"As a result of achieving video-rate imaging of events within the lung, we've shown how the immune system behaves during normal function and how tissues are affected in acute lung injury," Looney said. "For other disease processes in other organs, we hope to define how collections of cells participate and how they're organized."

In the future, the team plans to miniaturize the stabilizing rig in order to image live tissue biopsies.

"Many different specialties of clinical scientists and pathologists can use this imaging method to learn how disease progression unfolds, but miniaturizing the rig to image biopsied tissue would be a tremendous improvement," Krummel said. "In real-time, for instance, we can catch how cells interact with tumors and observe whether they promote growth or rejection, and whether medical therapy is working."


'/>"/>

Contact: Lauren Hammit
lauren.hammit@ucsf.edu
415-502-6397
University of California - San Francisco
Source:Eurekalert

Related biology news :

1. SNM releases new fact sheet on breast cancer and molecular imaging
2. Cheskin Added Value EVP Lee Shupp Discusses Evolving Dynamics of Consumers and Imaging Tech at 6Sight
3. MU brain imaging center provides research for autism, schizophrenia and Parkinsons disease
4. Similarities in imaging the human body, Earths crust focus of conference at UH
5. UNC expands brain imaging study of infants at risk for autism
6. Studies on imaging and tracking transplanted cells
7. Fattysaurus or thinnysaurus? How dinosaurs measure up with laser imaging
8. SNM Symposium on Multimodality Cardiovascular Molecular Imaging
9. Ultrasound imaging now possible with a smartphone
10. First neuroimaging study examining motor execution in children with autism reveals new insights
11. Lyncean Technologies Inc. receives $1.2 M from NCRR to develop new imaging technique
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:8/23/2017)... , Aug. 23, 2017  The general public,s help is being enlisted ... bacteria that live in and on the human body –and are believed ... The Microbiome Immunity ... human microbiome, starting with the gut. The project's goal is to help ... credit: IBM ...
(Date:7/20/2017)... (NYSE: DAL ) customers now can use fingerprints instead of ... Airport (DCA). ... Delta launches biometrics to board aircraft at Reagan Washington National Airport ... Delta,s biometric boarding pass experience that launched in May ... boarding process to allow eligible Delta SkyMiles Members who are enrolled in ...
(Date:6/23/2017)... N.Y. , June 23, 2017  IBM (NYSE: ... dairy research, today announced a new collaboration using next-generation ... chances that the global milk supply is impacted by ... Cornell University has become the newest academic institution to ... a food safety initiative that includes IBM Research, Mars, ...
Breaking Biology News(10 mins):
(Date:10/12/2017)... ... October 12, 2017 , ... ... first-ever genomics analysis platform specifically designed for life science researchers to analyze ... pioneering researcher Rosalind Franklin, who made a major contribution to the discovery ...
(Date:10/11/2017)... , ... October 11, 2017 , ... Personal eye wash is a basic first aid ... at a time. So which eye do you rinse first if a dangerous substance enters ... Plum Duo Eye Wash with its unique dual eye piece. , “Whether its dirt ...
(Date:10/11/2017)... a leading provider of patient support solutions, has announced the ... which will launch this week. The VMS CNEs will address ... enhance the patient care experience by delivering peer-to-peer education programs ... to help women who have been diagnosed and are being ... ...
(Date:10/11/2017)... ... October 11, 2017 , ... A new study ... in frozen and fresh in vitro fertilization (IVF) transfer cycles. The ... IVF success. , After comparing the results from the fresh and frozen transfer ...
Breaking Biology Technology: