Navigation Links
New defenses deployed against plant diseases
Date:3/14/2010

An international team led by scientists at the Sainsbury Laboratory in Norwich,UK, have transferred broad spectrum resistance against some important plant diseases across different plant families. This breakthrough provides a new way to produce crops with sustainable resistance to economically important diseases.

Food insecurity is driving the search for ways to increase the amount of food we grow, whilst at the same time reducing unsustainable agricultural inputs. One way to do this is to increase the innate ability of crops to fight off disease-causing pathogens. Increased disease resistance would reduce yield losses as well as reduce the need for pesticide spraying.

Breeding programs for resistance generally rely on single resistance genes that recognise molecules specific to particular strain of pathogens. Hence this kind of resistance rarely confers broad-spectrum resistance and is often rapidly overcome by the pathogen evolving to avoid recognition by the plant.

However, plants have another defence system, based on pattern recognition receptors (PRRs). PRRs recognise molecules that are essential for pathogen survival. These molecules are less likely to mutate without harming the pathogen's survival, making resistance to them more durable in the field. These essential molecules are common to many different microbes, meaning that if a plant recognises and can defend itself against one of these molecular patterns, it is likely to be resistant against a broad range of other pathogens.

Very few of these PRRs have been identified to date. Dr Cyril Zipfel and his group at the Sainsbury Laboratory in Norwich, UK, took a Brassica-specific PRR that recognises bacteria, and transformed it into the Solanaceae plants Nicotania benthaminia and tomato.

"We hypothesised that adding new recognition receptors to the host arsenal could lead to enhanced resistance," said Dr Zipfel.

Under controlled laboratory conditions, they tested these transformed plants against a variety of different plant pathogens, and found drastically enhanced resistance against many different bacteria, including some of great importance to modern agriculture such as Rastonia solanaceraum, the causal agent of bacterial wilt and a select agent in the United States under the Agricultural Bioterrorism Protection Act of 2002.

"The strength of this resistance is because it has come from a different plant family, which the pathogen has not had any chance to adapt to. Through genetic modification, we can now transfer this resistance across plant species boundaries in a way traditional breeding cannot," said Dr Zipfel.

Published in the journal Nature Biotechnology, the finding, that plant recognition receptors can be successfully transferred from one plant family to another provides a new biotechnological solution to engineering disease resistance. The Zipfel group is currently extending this work to other crops including potato, apple, cassava and banana that all suffer from important bacterial diseases, particularly in the developing world.

"A guiding principle in plant pathology is that most plants tend to be resistant to most pathogens. Cyril's work indicates that transfer of genes that contribute to this basic innate immunity from one plant to another can enhance pathogen resistance," commented Professor Sophien Kamoun, Head of the Sainsbury Laboratory. "The implications for engineering crop plants with enhanced resistance to infectious diseases are very promising."

This research was funded by the Gatsby Charitable Foundation and the Two Blades Foundation, who have patented the technology on behalf of the inventors, and involved research groups from INRA/CNRS in France, the University of California, Berkeley and Wageningen University in the Netherlands.


'/>"/>

Contact: Andrew Chapple
andrew.chapple@bbsrc.ac.uk
44-016-032-51490
Norwich BioScience Institutes
Source:Eurekalert  

Related biology news :

1. Scientists unravel plants natural defenses
2. Fruit flies show how salmonella escapes immune defenses
3. How plants fine tune their natural chemical defenses
4. Rattlesnake-type poisons used by superbug bacteria to beat our defenses
5. What causes cell defenses to crumble?
6. Researchers recreate SARS virus, open door for potential defenses against future strains
7. Understanding natural crop defenses
8. Scientists identify natural anti-cancer defenses
9. Vitamin D crucial to activating immune defenses
10. BIO-key(R) International to Showcase Deployed Biometric Security Applications at 2007 Biometric Technology Expo
11. BIO-key(R) International to Showcase Deployed Biometric Security Applications at 2007 Biometric Technology Expo
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
New defenses deployed against plant diseases
(Date:4/17/2017)... , April 17, 2017 NXT-ID, Inc. ... company, announces the filing of its 2016 Annual Report on Form ... Exchange Commission. ... Form 10-K is available in the Investor Relations section of the ... on the SEC,s website at http://www.sec.gov . 2016 ...
(Date:4/11/2017)... 11, 2017 Research and Markets has announced ... report to their offering. ... global eye tracking market to grow at a CAGR of 30.37% ... Tracking Market 2017-2021, has been prepared based on an in-depth market ... landscape and its growth prospects over the coming years. The report ...
(Date:4/5/2017)... Allen Institute for Cell Science today announces the launch ... dynamic digital window into the human cell. The website ... deep learning to create predictive models of cell organization, ... suite of powerful tools. The Allen Cell Explorer will ... resources created and shared by the Allen Institute for ...
Breaking Biology News(10 mins):
(Date:6/22/2017)... ... 22, 2017 , ... AESKU.GROUP, an innovation leader in ... Technologien GmbH, thereby expanding its product portfolio to include allergy and food intolerance ... atopic eczema or a food allergy. Allergies are escalating to epidemic proportions and ...
(Date:6/22/2017)... ... 2017 , ... The first human cell line HeLa, established in 1951, has ... cross-contamination of human cell lines with HeLa cells were published. Until recently, cross-contamination and ... and is associated with dramatic consequences for research. , In this educational webinar, ...
(Date:6/20/2017)... ... ... Biologist Dawn Maslar MS has found a biomarker that she claims verifies ... The Neuroscience of Meeting, Dating, Losing Your Mind, and Finding True Love, Maslar found ... step, in my estimation, was to scientifically track the evidence of commitment in men,” ...
(Date:6/20/2017)... ... June 20, 2017 , ... Do More with OHAUS , With the ... trusted supplier in the weighing industry, to extending its expertise across the entire laboratory ... immunoassays, hybridizations and more, allowing for its customers to 'Do More' in ...
Breaking Biology Technology: