Navigation Links
New 'control knobs' for stem cells identified
Date:12/3/2008

MEDFORD/SOMERVILLE, Mass. Natural changes in voltage that occur across the membrane of adult human stem cells are a powerful controlling factor in the process by which these stem cells differentiate, according to research published by Tufts University scientists.

Tufts doctoral student Sarah Sundelacruz, Professor of Biology Michael Levin, and Chair of Biomedical Engineering David L. Kaplan (corresponding author) published their paper "Membrane Potential Controls Adipogenic and Osteogenic Differentiation of Mesenchymal Stem Cells" in the November 17, 2008, issue of PLoS ONE (http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0003737).

"We have found that voltage changes act as a signal to delay or accelerate the decision of a stem cell to drop out of a stem state and differentiate into a specific cell type. This discovery gives scientists in regenerative medicine a new set of control knobs to use in ongoing efforts to shape the behavior of adult stem cells," said Levin. "In addition, by uncovering a new mechanism by which these cells are controlled in the human body, this research suggests potential future diagnostic applications."

Harnessing the potential of stem cells for applications such as wound healing and tissue regeneration is a tantalizing yet daunting task. Although many studies indicate that electrophysiology plays a crucial role in cell proliferation and differentiation, its functional role in stem cell biology is poorly understood.

The Tufts researchers studied the changes in membrane potential (voltage across the membrane) shown by human mesenchymal stem cells (hMSCs) obtained from donor bone marrow as the hMSCs were differentiating into fat and bone cells. They found that hyperpolarization (increased difference between the voltage in the interior and exterior of a cell) was characteristic of differentiated cells compared with undifferentiated cells and that hMSCs show different membrane potential profiles during bone vs. fat differentiation.

To determine whether hyperpolarization was functionally required for differentiation, the scientists depolarized the hMSCs by exposing them either to high levels of extracellular potassium ions or to ouabain, a compound that blocks the transfer of ions in and out of cells. Both treatments disrupted the normal increase in negative voltage that occurs during differentiation and suppressed fat and bone cell differentiation markers.

In contrast, treatment with hyperpolarizing reagents up-regulated bone cell markers indicating that voltage changes are not merely permissive for differentiation but can act as an instructive signal to either induce or inhibit differentiation.

More study is needed to determine whether hyperpolarization also determines which specific type of cell stem cells will differentiate into, according to the Tufts researchers.


'/>"/>

Contact: Kim Thurler
kim.thurler@tufts.edu
617-627-3175
Tufts University
Source:Eurekalert

Related biology news :

1. Cool idea for efficient climate control wins recognition
2. A scientific breakthrough on the control of the bad cholesterol
3. Futronic Launches FS22 Fingerprint Access Control Device
4. New insight into the controls on a go-to enzyme
5. Ultrasound shown to exert remote control of brain circuits
6. Boost from McGill, Gates Foundation helps Africans control pharma research
7. Birth control has long-term effect on hormone exposure
8. Waste from gut bacteria helps host control weight, UT Southwestern researchers report
9. Genes that control cell death fingered in age-related hearing loss
10. Can genetic information be controlled by light?
11. bioMETRX, Inc. Signs Deal To Acquire Controlling Interest in Biometric Solutions, LLC
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:11/30/2016)... Nov. 30, 2016  higi SH llc (higi) ... initiative targeting national brands, industry thought-leaders and celebrity ... respective audiences for taking steps to live healthier, ... in 2012, higi has built the largest self-screening ... 38 million people who have conducted over 185 ...
(Date:11/24/2016)... , Nov. 23, 2016 Cercacor today ... athletes and their trainers non-invasively measure hemoglobin, ... Pulse Rate, and Respiration Rate in approximately 30 seconds. ... users easy and immediate access to key data about ... of a training regimen. Hemoglobin carries ...
(Date:11/17/2016)... Market Watch: Primarily supported by ownership types; Private ... market is to witness a value of US$37.1 billion by ... Annual Growth Rate (CAGR) of 10.75% is foreseen from ... North America is not way behind ... at 9.56% respectively. Report Focus: The ...
Breaking Biology News(10 mins):
(Date:12/5/2016)... GRAND RAPIDS, Mich. , Dec. 5, 2016 NxGen MDx ... "By bringing the test in house, we,ve been able to improve ... costs down for patients," says Alan Mack , CEO of NxGen ... , , ... increase in test volume has led to more job opportunities at the ...
(Date:12/5/2016)... 5, 2016 The U.S. Biotechnology ... $108 billion of revenue and some $890 billion of ... on global biopharmaceuticals, and this figure is expected to ... lined up these four equities for assessment: Northwest Biotherapeutics ... (NASDAQ: ACAD ), Acorda Therapeutics Inc. (NASDAQ: ...
(Date:12/4/2016)... Dec. 3, 2016  In five studies being presented ... Annual Meeting and Exposition in San Diego ... to improve the delivery of life-saving treatments to patients ... are designed to carry therapies directly to the sites ... could provide a substantial advantage over traditional, systemic methods. ...
(Date:12/2/2016)... , Dec. 2, 2016 More than $4.3 ... 11th Double Helix Medals dinner ( DHMD ). The gala was held ... New York City and honored Alan ... contributions, respectively, to health and medicine and the public understanding ... in 2006, the event has raised $40 million for ...
Breaking Biology Technology: