Navigation Links
New X-ray method shows how frog embryos could help thwart disease
Date:5/17/2013

LEMONT, Ill. An international team of scientists using a new X-ray method recorded the internal structure and cell movement inside a living frog embryo in greater detail than ever before.

This result showcases a new method to advance biological research and the search for new treatments for genetic diseases.

Scientists at Northwestern University and the Karlsruher Institut fr Technologie in Germany, in collaboration with the Advanced Photon Source at the U.S. Department of Energy's Argonne National Laboratory, released the most precise depiction ever of the embryonic development of African clawed frogs, one of the most frequently studied model organisms in biology.

The results titled "X-ray phase-contrast in vivo microtomography probes new aspects of Xenopus gastrulation" were published May 16 in the journal Nature.

The team X-rayed an embryo during gastrulation, the period when its hundreds of cells start to organize into differentiated tissues that eventually form the nervous system, muscles and internal organs. Studies of African clawed frog embryos can provide clues to the evolution of vertebrates and how human genes turn on or off to create diseases.

Until now, however, it has been difficult to study these embryos. Classical absorption imaging requires a contrast agent and large X-ray dose that can harm living organisms. Researchers from the German synchrotron ANKA proposed a new method of nondestructive analysis using X-ray diffraction. The work was done at the APS outside Chicago because the APS's high-energy X-rays were required to prevent blurring of the image and damage to the sensitive embryos.

"To obtain the best possible results, a highly coherent high-energy X-ray source with high flux is necessary," said Xianghui Xiao, a scientist at the APS who collaborated on the work. "The APS is one of only a few X-ray lightsources in the world with this capability. The upgrade of the APS will further improve our ability to study the real-time movement of molecules in living organisms."

In the experiment, Xiao and his colleagues took regular 15-second exposures separated by periods of 10 minutes over the course of two hours of different gastrulas. The resulting 13 time-lapse scans provided a detailed portrait of the transfiguration of the frog cells.

"The motivation of the experiment was to be able to look at the process of how different larger structures develop at the cellular level in real time," Xiao said. "What we're doing is actually a kind of four-dimensional imaging."

The scientists discovered new morphological structures and clarified the process for redistributing fluid in the embryo. They also were able to locate the areas of the embryo that were driving the migration of tissues and cells during gastrulation

"X-ray diffraction enables high-resolution imaging of soft tissues," said Ralf Hofmann, one author of the study and a physicist at the Karlsruhe Institute of Technology in Germany. "In our work, we did not only mange to resolve individual cells and parts of their structure, but we could also analyze single cell migration, as well as the movement of cellular networks."


'/>"/>

Contact: Jared Sagoff
jsagoff@anl.gov
630-252-5549
DOE/Argonne National Laboratory
Source:Eurekalert

Related biology news :

1. Dental X-rays linked to common brain tumor
2. Stanford-SLAC team uses X-ray imaging to observe running batteries in action
3. Speed and power of X-ray laser helps unlock molecular mysteries
4. Low-cost carbon capture gets X-rayed
5. X-rays reveal the self-defence mechanisms of bacteria
6. Study provides recipe for supercharging atoms with X-ray laser
7. X-ray laser helps slay parasite that causes sleeping sickness
8. Scientists reassemble the backbone of life with a particle acceleratorynchrotron X-rays
9. X-rays reveal uptake of nanoparticles by soya bean crops
10. Improved X-ray microscopic imaging
11. A dual look at photosystem II using the worlds most powerful X-ray laser
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:4/13/2017)... , April 13, 2017 According to a new ... Authentication, Identity Analytics, Identity Administration, and Authorization), Service, Authentication Type, Deployment Mode, ... IAM Market is expected to grow from USD 14.30 Billion in 2017 ... (CAGR) of 17.3%. ... MarketsandMarkets Logo ...
(Date:4/11/2017)... April 11, 2017 No two people ... at the New York University Tandon School of ... have found that partial similarities between prints are ... in mobile phones and other electronic devices can ... The vulnerability lies in the fact that fingerprint-based ...
(Date:4/5/2017)... 2017  The Allen Institute for Cell Science today ... one-of-a-kind portal and dynamic digital window into the human ... first application of deep learning to create predictive models ... and a growing suite of powerful tools. The Allen ... future publicly available resources created and shared by the ...
Breaking Biology News(10 mins):
(Date:10/7/2017)... ... October 06, 2017 , ... ... and applications consulting for microscopy and surface analysis, Nanoscience Instruments is now ... Analytical offers a broad range of contract analysis services for advanced applications. ...
(Date:10/7/2017)... , Oct. 6, 2017  The 2017 Nobel ... three scientists, Jacques Dubochet, Joachim Frank ... in cryo-electron microscopy (cryo-EM) have helped ... the structural biology community. The winners worked with ... now routinely produce highly resolved, three-dimensional images of ...
(Date:10/6/2017)... ... October 06, 2017 , ... On Tuesday, October 24th, ABC² ... the first-ever adaptive clinical trial for glioblastoma (GBM). The featured speaker will be ... and open to the public, but registration is required. , WHAT: ABC² ...
(Date:10/5/2017)... Philadelphia, PA (PRWEB) , ... October 05, 2017 , ... ... of the newest frontiers in human health. Gut Love: You Are My Future, the ... offers an artist’s perspective as it explores the human condition through the lens of ...
Breaking Biology Technology: