Navigation Links
Nanoparticles, 'pH phoresis' could improve cancer drug delivery
Date:7/10/2013

WEST LAFAYETTE, Ind. -- Researchers have developed a concept to potentially improve delivery of drugs for cancer treatment using nanoparticles that concentrate and expand in the presence of higher acidity found in tumor cells.

The concept involves using nanoparticles made of "weak polybases," compounds that expand when transported into environments mimicking tumor cells, which have a higher acidity than surrounding tissues. The researchers used sophisticated modeling to show how the particles would accumulate in regions of higher acidity and remain there long enough to delivery anticancer drugs.

"This phenomenon, which we term pH phoresis, may provide a useful mechanism for improving the delivery of drugs to cancer cells in solid tumor tissues," said You-Yeon Won, an associate professor of chemical engineering at Purue University.

Solutions with a pH less than 7 are said to be acidic, and those with a higher pH are basic or alkaline. The pH phoresis concept hinges on using synthetic "polymer micelles," tiny drug-delivery spheres that harbor medications in their inner core and contain an outer shell made of a material that has been shown to expand dramatically as the pH changes from alkaline to acidic.

A twofold size increase could result in a similar increase in the efficiency of drug delivery to tumors.

"Such an effect would be a game changer by delivering the proper dose of anticancer drugs inside tumor cells," Won said. "This pH phoresis concept also could be combined readily within other established drug-delivery methodologies, making it potentially practical for medical application."

The concept is described in a research paper that will appear in the Journal of Controlled Release on July 15, and an unedited version appeared online June 19. The paper was written by Won and doctoral student Hoyoung Lee. Findings showed how the micelles' expansion is optimized in the specific pH in tumor cells.

The researchers demonstrated that the highest degree of micelle swelling in tumors needs to occur when there is a pH of about 7.0, plus or minus 0.5, for optimal delivery of drugs to tumor tissue.

"Solid tumors have a significantly lower extracellular pH, about 6.5-6.9, compared to normal tissue, which has an average pH of 7.4," Won said.

The weak polybases in the micelles contain molecules called amines, which are made of nitrogen and hydrogen atoms. The micelles swell at lower pH due to the increased "protonation," or the addition of protons to nitrogen atoms in the amines. Because the protons are positively charged, the like-charged amines repel each other, causing the nanoparticles to expand.

The positive charge slows the movement of micelles out of tumor tissue, which would cause the nanoparticles to accumulate inside the tumor mass long enough to enter tumor cells and release anticancer drugs.

"This concept is straightforward to understand, yet no one recognized it previously," Won said. "And it took us a while to put this description on a mathematical footing. To do that, we had to modify the famous Fick's first law diffusion equation."

The law, derived by physician and physiologist Adolf Fick in 1855, describes how molecules diffuse from regions of high concentration to regions of low concentration.

The micelles also are coated with protective varnish so that they might remain intact long enough to reach tumor sites, where they would expand and then biodegrade.

More research is needed to determine how well the approach could enhance drug delivery, but the pH phoresis concept developed by Won and his student represents a step in developing nanomedicine techniques in drug delivery, he said.


'/>"/>

Contact: Emil Venere
venere@purdue.edu
765-494-4709
Purdue University
Source:Eurekalert

Related biology news :

1. Heart-powered pacemaker could one day eliminate battery-replacement surgery
2. New test could help track down and prosecute terrorists
3. New antibiotic could make food safer and cows healthier
4. BPA could affect reproductive capabilities, cause infection of the uterus
5. Key to immune system disease could lie inside the cheek
6. New analysis of premature infants heartbeats, breathing could be cues for leaving NICU
7. Tiny electrical sensors could signal faster MRSA diagnosis
8. Corals could survive a more acidic ocean
9. Early warning system for seizures could cut false alarms
10. Rapid method of assembling new gene-editing tool could revolutionize genetic research
11. 800-year-old farmers could teach us how to protect the Amazon
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:4/11/2017)... Research and Markets has announced the addition ... their offering. ... tracking market to grow at a CAGR of 30.37% during the ... 2017-2021, has been prepared based on an in-depth market analysis with ... its growth prospects over the coming years. The report also includes ...
(Date:4/5/2017)... 2017 Today HYPR Corp. , leading ... component of the HYPR platform is officially FIDO® ... security architecture that empowers biometric authentication across Fortune 500 ... secured over 15 million users across the financial services ... home product suites and physical access represent a growing ...
(Date:3/30/2017)... , March 30, 2017 The research team ... for three-dimensional (3D) fingerprint identification by adopting ground breaking 3D fingerprint ... new realm of speed and accuracy for use in identification, crime ... affordable cost. ... A ...
Breaking Biology News(10 mins):
(Date:10/11/2017)... (PRWEB) , ... October 11, 2017 , ... ... Administration (FDA) has granted orphan drug designation to SBT-100, its novel anti-STAT3 (Signal ... the treatment of osteosarcoma. SBT-100 is able to cross the cell membrane and ...
(Date:10/10/2017)... ... October 10, 2017 , ... Dr. Bob Harman, founder ... local San Diego Rotary Club. The event entitled “Stem Cells and ... had 300+ attendees. Dr. Harman, DVM, MPVM was joined by two human doctors: ...
(Date:10/10/2017)... , ... October 10, 2017 , ... ... of 13 prestigious awards honoring scientists who have made outstanding ... a scheduled symposium during Pittcon 2018, the world’s leading conference and exposition for ...
(Date:10/9/2017)... (PRWEB) , ... October 09, 2017 , ... ... a four-tiered line of medical marijuana products targeting the needs of consumers who ... packaging of Kindred takes place in Phoenix, Arizona. , As operators of two ...
Breaking Biology Technology: