Navigation Links
Nano-machines for 'bionic proteins'
Date:2/15/2013

This press release is available in German.

Physicists of the University of Vienna together with researchers from the University of Natural Resources and Life Sciences Vienna developed nano-machines which recreate principal activities of proteins. They present the first versatile and modular example of a fully artificial protein-mimetic model system, thanks to the Vienna Scientific Cluster (VSC), a high performance computing infrastructure. These "bionic proteins" could play an important role in innovating pharmaceutical research. The results have now been published in the renowned journal "Physical Review Letters".

Proteins are the fundamental building blocks of all living organism we currently know. Because of the large number and complexity of bio-molecular processes they are capable of, proteins are often referred to as "molecular machines". Take for instance the proteins in your muscles: At each contraction stimulated by the brain, an uncountable number of proteins change their structures to create the collective motion of the contraction. This extraordinary process is performed by molecules which have a size of only about a nanometer, a billionth of a meter. Muscle contraction is just one of the numerous activities of proteins: There are proteins that transport cargo in the cells, proteins that construct other proteins, there are even cages in which proteins that "mis-behave" can be trapped for correction, and the list goes on and on. "Imitating these astonishing bio-mechanical properties of proteins and transferring them to a fully artificial system is our long term objective", says Ivan Coluzza from the Faculty of Physics of the University of Vienna, who works on this project together with colleagues of the University of Natural Resources and Life Sciences Vienna.

Simulations thanks to Vienna Scientific Cluster (VSC)

In a recent paper in Physical Review Letters, the team presented the first example of a fully artificial bio-mimetic model system capable of spontaneously self-knotting into a target structure. Using computer simulations, they reverse engineered proteins by focusing on the key elements that give them the ability to execute the program written in the genetic code. The computationally very intensive simulations have been made possible by access to the powerful Vienna Scientific Cluster (VSC), a high performance computing infrastructure operated jointly by the University of Vienna, the Vienna University of Technology and the University of Natural Resources and Life Sciences Vienna.

Artificial proteins in the laboratory

The team now works on realizing such artificial proteins in the laboratory using specially functionalized nanoparticles. The particles will then be connected into chains following the sequence determined by the computer simulations, such that the artificial proteins fold into the desired shapes. Such knotted nanostructures could be used as new stable drug delivery vehicles and as enzyme-like, but more stable, catalysts.


'/>"/>
Contact: Ivan Coluzza
ivan.coluzza@univie.ac.at
43-142-775-1176
University of Vienna
Source:Eurekalert  

Related biology news :

1. Kessler Foundation implements Ekso Bionics first commercial robotic exoskeleton
2. More effective method of imaging proteins
3. Gold nanoantennas detect proteins
4. Discovery of a new family of key mitochondrial proteins for the function and viability of the brain
5. Discovery of plant proteins may boost agricultural yields and biofuel production
6. UCLA researchers develop way to strengthen proteins with polymers
7. Discovered a new checkpoint of cell cycle control through joint action of 2 proteins
8. A non-invasive intracellular thermometer with fluorescent proteins has been created
9. Speeding up drug discovery with rapid 3-D mapping of proteins
10. Identification of differential proteins in maternal serum with Down syndrome
11. Neiker-Tecnalia identifies antitumour proteins in the latex of the plant Euphorbia trigona
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
Nano-machines for 'bionic proteins'
(Date:3/22/2017)... YORK , March 21, 2017 ... Marketing Cloud used by retailers such as 1-800-Flowers ... its platform — Product Recommendations and Replenishment. Using Optimove,s ... give more personalized product and replenishment recommendations to ... but also on predictions of customer intent drawn ...
(Date:3/16/2017)... , March 16, 2017 CeBIT 2017 - Against identity fraud with ... Reading ... Used combined in one project, multi-biometric solutions provide a crucial ... Used combined in ... ...
(Date:3/7/2017)... March 7, 2017 Brandwatch , the leading social ... The Prince,s Trust to uncover insights to support its reporting, ... The UK,s leading youth charity will be using Brandwatch ... and get a better understanding of the topics and issues that ... ...
Breaking Biology News(10 mins):
(Date:3/23/2017)... NetworkNewsWire Editorial Coverage  ... Cancer remains one of the world,s ... systems, in terms of costs and resources. However, as the ... of innovative and efficient therapies that demonstrate higher chances of ... cancer treatments, a growing number of patients receiving immuno-oncology therapies ...
(Date:3/23/2017)... VILLAGE, Colo. , March 23, 2017  Agriculture ... in Series A financing and note conversion to commercialize ... Cool Planet is focused on developing products that are ... nearly $30 million in the last 18 months. This ... and North Bridge Venture Partners. The ...
(Date:3/23/2017)... La. (PRWEB) , ... March 23, 2017 , ... ... industrial monitoring solutions, today announced the hire of Dr. Sigmund “Sig” Floyd as ... customer applications, strategic partnerships and joint development activities. , “Dr. Floyd’s career has ...
(Date:3/22/2017)... Worcester, Mass. (PRWEB) , ... March 22, 2017 ... ... to scale up human tissue regeneration from small lab samples to full-size tissues, ... injuries: how to establish a vascular system that delivers blood deep into the ...
Breaking Biology Technology: