Navigation Links
Mount Sinai researchers develop first successful laboratory model for studying hepatitis C
Date:8/2/2013

By differentiating monkey stem cells into liver cells and inducing successful infection, researchers from the Icahn School of Medicine at Mount Sinai have shown for the first time that the hepatitis C virus (HCV) can replicate in monkeys, according to research published in the journal Gastroenterology. The new findings may lead to the first new animal model and provide new avenues for developing treatments and vaccines for this disease, which impacts more than three million people in the United States.

Scientists have tried for decades to develop animal models to study HCV, but the virus was incapable of infecting any species except for humans and chimpanzees. With a recent National Institutes of Health-imposed moratorium restricting chimpanzee research, the Mount Sinai research team turned to a close relative of chimpanzees and humansmacaques. Led by Matthew Evans, PhD, and Valerie Gouon-Evans, PhD, of Mount Sinai, the research team sought to find out why previous attempts to infect macaques with HCV failed.

Dr. Gouon-Evans, who is Assistant Professor of in the Department of Developmental and Regenerative Biology at Mount Sinai, worked with a team at the Fred Hutchison Cancer Research Center in Seattle to differentiate macaque stem cells into liver cells. Dr. Evans, who is an Assistant Professor in the Department of Microbiology, and his team then attempted to infect these cells with HCV in a petri dish. They found that these differentiated cells were able to support HCV infection and replication, although not as effectively as in human liver cells.

"Now that we know that HCV infection in macaque cells is possible, we wanted to find out why it only worked in liver cells that were derived from stem cells," said Dr. Gouon-Evans. "By identifying where in the viral life cycle the infection is dysfunctional, we can develop an effective animal model of HCV."

Dr. Evans and his team found that HCV was less efficient at entering macaque cells to initiate infection compared to human cells because changes in the macaque form of a certain cell surface receptor rendered it less functional than the human version. This cell entry block could be overcome by expressing the human version of this receptor in macaque cells. Furthermore, HCV infection of normal macaque cells was greatly enhanced by changes to the virus that loosened its requirements for that receptor.

"Our discovery shows that by manipulating either host or viral genetics we can efficiently infect macaque cells," said Dr. Evans. "These findings may open doors for the field of HCV research, lead to new animal models, and hopefully vaccines and therapies."

Next, Dr. Evans plans to take these experiments out of petri dishes by attempting to infect macaques in vivo with the mutant HCV that can use the receptors this animal naturally expresses. If successful, this work would provide a new, much-needed animal model for HCV studies and vaccine development.


'/>"/>

Contact: Mount Sinai Press Office
newsmedia@mssm.edu
212-241-9200
The Mount Sinai Hospital / Mount Sinai School of Medicine
Source:Eurekalert

Related biology news :

1. AMP concerned about the structure and application of gap fill payment amounts
2. Total amount of exercise important, not frequency, research shows
3. Earthquake swarms; marine Ediacaran fossil traces; Alca obsidian; Mammoth Mountain
4. Mount Sinai celebrates team science at second-annual SINAInnovations Conference Nov. 18-19, 2013
5. Mount Sinai discovers new liver cell for cellular therapy to aid in liver regeneration
6. Going green: Nation equipped to grow serious amounts of pond scum for fuel
7. Intermountain Medical Center reseachers develop new 3-D technology to treat atrial fibrillation
8. Mount Sinai Selects Exemplar LIMS for Genomics Core Facility
9. The right amount of vitamin D for babies
10. Mount Sinai study identifies new gene variations associated with heart rate
11. Mount Sinai leads global program using stem cells to accelerate cures for Alzheimers disease
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:4/6/2017)... LONDON , April 6, 2017 ... Control, RFID, ANPR, Document Readers, by End-Use (Transportation & ... Energy Facility, Oil, Gas & Fossil Generation Facility, Nuclear ... Healthcare, Educational, Other) Are you looking for ... Authentication sector? ...
(Date:4/4/2017)... 4, 2017   EyeLock LLC , a leader ... United States Patent and Trademark Office (USPTO) has issued ... linking of an iris image with a face image ... the company,s 45 th issued patent. ... timely given the multi-modal biometric capabilities that have recently ...
(Date:3/30/2017)... 2017 Trends, opportunities and forecast in this ... technology (fingerprint, AFIS, iris recognition, facial recognition, hand geometry, ... end use industry (government and law enforcement, commercial and ... and others), and by region ( North America ... Asia Pacific , and the Rest of the ...
Breaking Biology News(10 mins):
(Date:10/12/2017)... ... October 12, 2017 , ... ... with the addition of its newest module, US Hemostats & Sealants. , SmartTRAK’s ... hemostats, absorbable hemostats, fibrin sealants, synthetic sealants and biologic sealants used in surgical ...
(Date:10/11/2017)... Charlotte, N.C. (PRWEB) , ... October 11, 2017 ... ... ARCS® Foundation President Andi Purple announced Dr. Suneel I. Sheikh, the ... Laboratories ( ASTER Labs ), Inc. has been selected for membership in ...
(Date:10/11/2017)... ... October 11, 2017 , ... ComplianceOnline’s Medical Device Summit is back ... 8th June 2018 in San Francisco, CA. The Summit brings together current and former ... CEOs, board directors and government officials from around the world to address key issues ...
(Date:10/11/2017)... LAGUNA HILLS, Calif. , Oct. 11, 2017 ... London (ICR) and University of ... prognostic tool to risk-stratify patients with multiple myeloma (MM), in ... nine . The University of Leeds ... by Myeloma UK, and ICR will perform the testing services ...
Breaking Biology Technology: