Navigation Links
More efficient production of biofuels from waste with the help of modified yeasts
Date:8/29/2013

A significant portion of the petroleum consumed by the transport sector must be replaced in the long term by renewable energy. Therefore, it is of the utmost economic and ecological importance to optimise the production of biofuels from renewable raw materials. Researchers from VIB who are associated with KU Leuven have developed yeast strains that produce bio-ethanol from waste with an unprecedented efficiency. As a result, they are well placed to become important players on a global scale in this burgeoning industry.

Johan Thevelein (VIB/KU Leuven): "Our new yeast strains come at a good moment because the entire industry of second-generation biofuels has now clearly come quite a bit closer to becoming economically viable. We are working at full capacity to further improve our yeast strains in order to continue to increase the efficiency of the fermentations, and in this way we hope to further strengthen our leadership position in this burgeoning industrial sector."

Energy consumption of the transport sector

The production of bio-ethanol from waste streams, post-harvest waste (e.g., straw, wheat bran, empty corn husks or corn stalks) and wood (waste) is generally considered to be one of the most sustainable and climate-friendly technologies for producing fuels for the transport sector (road and air traffic). This sector is responsible for more than 10% of the energy consumed in Flanders. In 2011, the portion of energy that was renewable was only 4%, with bio-diesel as the predominant source (86%), followed by bio-ethanol (12%) and then green electricity (2%). In the future, the portion of renewable energy should increase even further to reach the minimum targeted level of 10% renewable energy by 2020.

Degrading all of the sugars in waste

Yeasts are used in the production of bio-ethanol from waste streams. Until recently, there were a number of important obstacles to making efficient bio-ethanol production attainable. One of these was the fact that no one single strain of yeast was capable of converting all of the sugars in the biomass into ethanol. The pentose sugars, in particular, posed a big problem. In recent years, a great deal of progress has been made with genetically modified yeast strains that are also able to ferment pentose sugars, but these laboratory strains did not prove to be entirely suitable for industrial fermentation processes.

Mekonnen Demeke and Johan Thevelein (VIB/KU Leuven) have now cleared this obstacle out of the way. They did this by changing the DNA of the best industrial strains of yeast used for bio-ethanol production in such a way that the modified yeast strains were also able to very easily ferment pentose sugars while at the same time becoming even more robust than they were. Their new yeast strains have also proved to efficiently and quickly ferment various types of biomass into bio-ethanol in real conditions, outside of the lab. The interest in this new strain from the industry itself is great, because the efficiency with which these yeast strains make bio-ethanol from waste is unprecedented.


'/>"/>

Contact: Sooike Stoops
info@vib.be
32-924-46611
VIB (the Flanders Institute for Biotechnology)
Source:Eurekalert

Related biology news :

1. New possibilities for efficient biofuel production
2. Recruiters matchen het efficiëntst met CRMATCH en ELISE
3. Most Efficient Matching in Recruitment With CRMATCH and ELISE
4. Practice makes the brains motor cortex more efficient, Pitt researchers say
5. Bio-inspired design may lead to more energy efficient windows
6. New ultra-efficient HPC data center debuts
7. Researchers say sunlight yields more efficient carbon dioxide to methanol model
8. Engineering cells for more efficient biofuel production
9. Why some grasses evolved a more efficient photosynthesis and others didnt
10. Rice unveils super-efficient solar-energy technology
11. Dealing with power outages more efficiently
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:12/5/2016)... , Dec. 5, 2016  The Office ... today published "Can CT Scans Enhance or Replace ... the potential of supporting or replacing forensic autopsies ... CT scan. In response to recommendations ... is exploring using CT scans as a potential ...
(Date:12/2/2016)... India , December 1, 2016 ... Authentication type (Fingerprint, Voice), Future Technology (Iris Recognition ... and Region - Global Forecast to 2021", published ... USD 442.7 Million in 2016, and is projected ... at a CAGR of 14.06%.      ...
(Date:12/2/2016)...   SoftServe , a global digital technology ... electrocardiogram (ECG) biosensor analysis system for continuous driver ... The smart system ensures device-to-device communication between ECG ... mobile devices to easily ,recognize, and monitor users ... technology advances, so too must the security systems ...
Breaking Biology News(10 mins):
(Date:12/6/2016)... ... December 06, 2016 , ... ... on discovery and development of precision treatments for neurodegenerative diseases, today announced ... disease (AD) inhibited the direct neurotoxic effect of prion-like forms of Amyloid ...
(Date:12/6/2016)... ... December 06, 2016 , ... ... management solutions headquartered in Aurora, Ohio, announced the opening of their new office ... the newly constructed facility is home to 200 employees focused on providing sales, ...
(Date:12/5/2016)... , Dec. 5, 2016 Axovant Sciences ... biopharmaceutical company focused on the treatment of dementia, today ... for the treatment of Alzheimer,s disease will be presented ... Meeting on Friday, December 9, 2016 in ... show results of both simple and complex measures of ...
(Date:12/5/2016)... ... December 05, 2016 , ... ... cellulose nanocrystals and cellulose nanofibrils. The composition claims are not limited to ... claims directed to combination with polymers, carbon fibers, graphene, and other materials. ...
Breaking Biology Technology: