Navigation Links
Monitoring and robust induction of nephrogenic intermediate mesoderm from human iPSCs

The research group led by Associate Professor Kenji Osafune and his colleague Shin-ichi Mae, both from Center for iPS Cell Research and Application (CiRA), Kyoto University in Japan, has succeeded in developing a highly efficient method of inducing human induced pluripotent stem (iPS) cells to differentiate into intermediate mesoderm, the precursor of kidney, gonad, and other cell lineages. This represents a major step toward realizing renal regeneration.

As nearly all kidney cells are derived through differentiation from intermediate mesoderm, to realize kidney regeneration requires first the development of an efficient technology for differentiating human iPS or embryonic stem (ES) cells into intermediate mesoderm.

The research team established a method through which fluorescent protein can be readily inserted into the human iPS/ES cell genome through homologous recombination and used it in human iPS cells to successfully introduce green fluorescent protein (GFP) into Odd-skipped related 1: (OSR1), a marker gene for intermediate mesoderm differentiation. This makes it possible to ascertain whether differentiation into the target intermediate mesoderm cells has been achieved.

The system was then used to establish a protocol for inducing iPS cell differentiation into intermediate mesoderm which produced a high success rate of 90% or more. It was confirmed that the resulting human intermediate mesoderm was able to differentiate into various types of kidney cell, and renal tubule structures were successfully generated.

The findings indicate the possibility of using iPS cells to create a supply of cells for use in renal regenerative medicine. The differentiation system developed by the researchers is also expected to provide a new research tool to help elucidate the developmental mechanism of intermediate mesoderm.

The next step required is to develop a technique that allows efficient and specific differentiation into kidney cells using intermediate mesoderm derived from human iPS/ES cells. As intermediate mesoderm is known to differentiate into the three different lineages of kidney, adrenal cortex, and gonad cells, the new technique has potential application in regenerative medicine not only for the kidney but also for the adrenal cortex and gonad.

Contact: CiRA International Public Communications Office
Center for iPS Cell Research and Application - Kyoto University

Related biology news :

1. Chemical pollution in Europes seas: The monitoring must catch up with the science
2. New CU-NOAA monitoring system clarifies murky atmospheric questions
3. Tattoo-like devices for wireless pregnancy monitoring
4. Preventice Expands Options for Wireless Patient Monitoring with Qualcomm Life
5. NTU start-up launches worlds first 3-in-1 water monitoring system
6. Forest carbon monitoring breakthrough in Colombia
7. Ecological monitoring on bird populations in Europe re-evaluated
8. Sandia shows monitoring brain activity during study can help predict test performance
9. Detection, analysis of cell dust may allow diagnosis, monitoring of brain cancer
10. Call for global monitoring of infectious diseases in dogs and cats
11. Wildlife monitoring cameras click jaguar and ocelot photos
Post Your Comments:
(Date:11/30/2015)... , Nov. 30, 2015  BIOCLAIM announced ... finalist in this year,s Fierce Innovation Awards:  Healthcare Edition, ... FierceHealthIT , FierceHealthcare , ... as a finalist in the category of "Privacy ... --> --> ...
(Date:11/19/2015)...  Based on its in-depth analysis of the biometric ... the 2015 Global Frost & Sullivan Award for Product ... this award to the company that has developed the ... the market it serves. The award recognizes the extent ... customer base demands, the overall impact it has in ...
(Date:11/18/2015)... ALBANY, New York , November 18, 2015 /PRNewswire/ ... Transparency Market Research has published a new market report ... Share, Growth, Trends, and Forecast, 2015 - 2021. According to ... bn in 2014 and is anticipated to reach US$29.1 ... 2015 to 2021. North America ...
Breaking Biology News(10 mins):
(Date:12/1/2015)... ... December 01, 2015 , ... Matthew “Tex” VerMilyea, PhD, HCLD, has joined ... will oversee all IVF lab procedures as well as continue his research efforts into ... 7,305 miles to Auckland, New Zealand to bring home a High Complexity Clinical Laboratory ...
(Date:11/30/2015)... ... , ... Global Stem Cells Group Chile CEO ... America and abroad for the first Iberoamerican Convention on Aesthetic Medicine, Cosmetology and ... will present and discuss new trends in anti-aging stem cell treatments, regenerative medicine ...
(Date:11/30/2015)... ... 2015 , ... Global Stem Cells Group today ... Santiago Marriott. The Global Stem Cells Group GMP facility is equipped with the ... medical researchers and practitioners, experienced in administering stem cell protocols using highly manipulated ...
(Date:11/30/2015)... , Dec. 1, 2015  An interventional radiology technique shows ... the preliminary results of a study being presented today at ... North America (RSNA). --> ... for decades by interventional radiologists as a way to stop ... procedure as a means of treating obesity is new. ...
Breaking Biology Technology: