Navigation Links
Molecules assemble in water, hint at origins of life
Date:2/20/2013

The base pairs that hold together two pieces of RNA, the older cousin of DNA, are some of the most important molecular interactions in living cells. Many scientists believe that these base pairs were part of life from the very beginning and that RNA was one of the first polymers of life. But there is a problem. The RNA bases don't form base pairs in water unless they are connected to a polymer backbone, a trait that has baffled origin-of-life scientists for decades. If the bases don't pair before they are part of polymers, how would the bases have been selected out from the many molecules in the "prebiotic soup" so that RNA polymers could be formed?

Researchers at the Georgia Institute of Technology are exploring an alternate theory for the origin of RNA: they think the RNA bases may have evolved from a pair of molecules distinct from the bases we have today. This theory looks increasingly attractive, as the Georgia Tech group was able to achieve efficient, highly ordered self-assembly in water with small molecules that are similar to the bases of RNA. These "proto-RNA bases" spontaneously assemble into gene-length linear stacks, suggesting that the genes of life could have gotten started from these or similar molecules. The research is published online in the Journal of the American Chemical Society.

The discovery was made by a team of scientists led by Georgia Tech Professor Nicholas Hud, who has been trying for years to find simple molecules that will assemble in water and be capable of forming RNA or its ancestor. Hud's group knew that they were on to something when they added a small chemical tail to a proto-RNA base and saw it spontaneously form linear assemblies with another proto-RNA base. In some cases, the results produced 18,000 nicely ordered, stacked molecules in one long structure.

"Thinking about the origin of RNA reminds me of the paradox of your grandfather's ax," said Hud, a professor in the School of Chemistry and Biochemistry. "If your father changed the handle and you changed the head, is it the same ax? We see RNA the same way. Its chemical structure might have changed over time, but it was in continual use so we can consider it to be the same molecule."

Hud concedes that scientists may never be 100 percent sure what existed four billion years ago when a complex mixture of chemicals started to work together to start life. His next goal is to determine whether the proto-RNA bases can be linked by a backbone to form a polymer that could have functioned as a genetic material.

Georgia Tech partnered with the Institute for Research in Biomedicine in Barcelona, Spain on the project. The proto-RNA's two-component, self-assembling system consisted of cyanuric acid (CA) and TAPAS, a derivative of triaminopyrimidine (TAP).

In addition to addressing the origin-of-life questions, Hud suggests the self-assembly process could be used in the future to create new materials, such as nanowires.


'/>"/>

Contact: Jason Maderer
maderer@gatech.edu
404-385-2966
Georgia Institute of Technology
Source:Eurekalert  

Related biology news :

1. How our cells cope with toxic small molecules
2. How computers push on the molecules they simulate
3. Dance of water molecules turns fire-colored beetles into antifreeze artists
4. A class of RNA molecules protects germ cells from damage, Penn vet researchers show
5. Researchers develop new stamping process to pattern biomolecules at high resolution
6. Nano-velcro clasps heavy metal molecules in its grips
7. Weighing molecules 1 at a time
8. New model gives hands-on help for learning the secrets of molecules
9. Iowa State, Ames Lab researchers invent new tool to study single biological molecules
10. Scientists reassemble the backbone of life with a particle accelerator
11. Scientists reassemble the backbone of life with a particle acceleratorynchrotron X-rays
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
Molecules assemble in water, hint at origins of life
(Date:4/6/2017)... 6, 2017 Forecasts by Product ... Readers, by End-Use (Transportation & Logistics, Government & Public ... & Fossil Generation Facility, Nuclear Power), Industrial, Retail, Business ... Are you looking for a definitive report on ... ...
(Date:4/4/2017)... NEW YORK , April 4, 2017   ... solutions, today announced that the United States Patent and ... The patent broadly covers the linking of an iris ... the same transaction) and represents the company,s 45 th ... our latest patent is very timely given the multi-modal ...
(Date:3/30/2017)... 2017 Trends, opportunities and forecast in this ... technology (fingerprint, AFIS, iris recognition, facial recognition, hand geometry, ... end use industry (government and law enforcement, commercial and ... and others), and by region ( North America ... Asia Pacific , and the Rest of the ...
Breaking Biology News(10 mins):
(Date:10/11/2017)... , ... October 11, 2017 , ... ... (FDA) has granted orphan drug designation to SBT-100, its novel anti-STAT3 (Signal Transducer ... treatment of osteosarcoma. SBT-100 is able to cross the cell membrane and bind ...
(Date:10/10/2017)... research firm Parks Associates announced today that Tom Kerber ... Annual Meeting , October 11 in Scottsdale, Arizona . ... how smart safety and security products impact the competitive landscape. ... Parks Associates: Smart Home Devices: Main Purchase Driver ... "The residential security market has experienced continued growth, and the ...
(Date:10/9/2017)... (PRWEB) , ... October 09, 2017 , ... The award-winning ... to broadcast first quarter 2018. American Farmer airs Tuesdays at 8:30aET on RFD-TV. ... is faced with the challenge of how to continue to feed a growing nation. ...
(Date:10/7/2017)... , ... October 06, 2017 ... ... in Hi-C-based genomic technologies, launched its ProxiMeta™ Hi-C metagenome deconvolution product, featuring ... kit and accompanying cloud-based bioinformatics software to perform Hi-C metagenome deconvolution using ...
Breaking Biology Technology: