Navigation Links
Mimicking nature at the nanoscale: Selective transport across a biomimetic nanopore

Researchers at Delft University of Technology and the University of Basel have established a biomimetic nanopore that provides a unique test and measurement platform for the way that proteins move into a cell's nucleus. In the journal Nature Nanotechnology (June 19 - online), they report an artificial nanopore that is functionalized with key proteins which mimicks the natural nuclear pore. Upon testing the transport of individual proteins through the biomimetic pore, they found that most proteins cannot move through, but some specific ones can indeed pass. This is the hallmark of the intriguing selectivity that is also found in natural pores. The biomimetic pore is fully functional and can be used as a testing platform for studies of drug delivery into a cell's nucleus.

The nuclear pore complex

"Human cells have a nucleus, and proteins and RNA need to get in and out. This is regulated by small holes, called nuclear pore complexes. These are essential biological pores that act as gatekeepers of the cell nucleus. They transport proteins and RNA in and out of the nucleus in a highly selective manner, which means that some go through but others are blocked from passing. There is much debate on how this intriguing selectivity is achieved. Given the fact that it is very difficult to perform high-resolution measurements in the complex environment of the living cell, the exact mechanism is hard to resolve." Professor Cees Dekker, director of the Kavli Institute of Nanoscience at Delft and leader of this research, explains. In the new research by Dekker's group in collaboration with the group of dr. Roderick Lim of the University of Basel, they were able to make a biomimetic nanopore a synthetic pore that imitates the nuclear pore which acts as a new, powerful platform to monitor transport of individual proteins across.

Biomimetic nanopore

Dekker: "One promising approach to study this nuclear transport is biomimetics the development of synthetic systems that imitate biological structures and processes. Advances in nanotechnology now make it possible to study and shape matter at the nanometer scale, opening the way to imitate biological structures at the molecular level to both study and harness their ingenuity." The group of dr. Roderick Lim at the University of Basel purified the nuclear pore proteins and Dekkers group made the biomimetic nanopores of these by attaching these proteins to small holes in a solid-state support.


The new research, performed chiefly by lead author Stefan Kowalczyk, a graduate student in Dekkers lab, demonstrates that it is possible to establish a biomimetic nuclear pore and to monitor transport of individual proteins across the pore. Importantly, the biomimetic pore exhibits strong selectivity, just like the natural nuclear pore complex: ImpB proteins do pass the pores, whereas BSA proteins do not (as illustrated by the attached image). A differing degree of selectivity was found, depending on which exact nuclear pore proteins were used to functionalize the pore. The researchers have shown that the biomimetic pore is fully functional and can be used as a testing platform for studies of drug delivery into a cell's nucleus.


Contact: Prof. Cees Dekker
Delft University of Technology

Related biology news :

1. Mimicking nature, water-based artificial leaf produces electricity
2. Boston Univ., Veterans Affairs find sports brain trauma may cause disease mimicking ALS
3. Wildlife Conservation Society finds wild cat mimicking monkey calls
4. Some vocal-mimicking animals, particularly parrots, can move to a musical beat
5. GigaBlitz will turn high-resolution images of nature into global inventory of organisms, habitats
6. Nanotechnologists must take lessons from nature
7. How natures best ideas inspire innovative new technologies
8. Nature helps to solve a sticky problem
9. 2011 PerkinElmer Signature Genomic Laboratories Travel Award winner announced
10. Nature paper calls for carbon labeling
11. New data published in Nature Genetics demonstrate that tiny LNA-based compounds developed by Santaris Pharma A/S inhibit entire disease-associated microRNA families
Post Your Comments:
(Date:6/14/2017)... (NYSE: IBM ) is introducing several innovative partner startups ... collaboration between startups and global businesses, taking place in ... nine startups will showcase the solutions they have built with ... France is one of the ... percent increase in the number of startups created between 2012 ...
(Date:4/24/2017)... , April 24, 2017 Janice ... partner with  Identity Strategy Partners, LLP (IdSP) , ... or without President Trump,s March 6, 2017 ... Entry , refugee vetting can be instilled with greater ... (Right now, all refugee applications are suspended by ...
(Date:4/13/2017)... PUNE, India , April 13, 2017 According ... Identity Proofing, Identity Authentication, Identity Analytics, Identity Administration, and Authorization), Service, Authentication ... by MarketsandMarkets™, the IAM Market is expected to grow from USD 14.30 ... Annual Growth Rate (CAGR) of 17.3%. ... ...
Breaking Biology News(10 mins):
(Date:10/11/2017)... CA (PRWEB) , ... October 11, 2017 , ... ... upregulate any gene in its endogenous context, enabling overexpression experiments and avoiding the ... system with small RNA guides is transformative for performing systematic gain-of-function studies. ...
(Date:10/11/2017)... ... October 11, 2017 , ... ... it will be hosting a Webinar titled, “Pathology is going digital. Is your ... on digital pathology adoption best practices and how Proscia improves lab economics and ...
(Date:10/11/2017)... ... , ... Disappearing forests and increased emissions are the main causes of the ... Especially those living in larger cities are affected by air pollution related diseases. , ... pollution-affected countries globally - decided to take action. , “I knew I had to ...
(Date:10/10/2017)... ... October 10, 2017 , ... San Diego-based team building and cooking events company, ... today. The bold new look is part of a transformation to increase awareness, ... significant growth period. , It will also expand its service offering from its signature ...
Breaking Biology Technology: