Navigation Links
Metagenomics of the deep Mediterranean
Date:9/22/2007

Metagenomics is a revolutionary approach to study microbes. Rather than isolating pure cultures, the power of high-throughput sequencing is applied directly to environmental samples to obtain information about the genomes of the prokaryotic cells present in a specific habitat studied. The ocean is an ideal subject of this approach because of its enormous microbiota, whose biomass equals that of all other living organisms on earth is mostly microbial, and also because most of these microbes are extremely fastidious to cultivate.

Craig Venter pioneered these studies and has sampled the surface of the World oceans, but has only scraped the surface. Only one study carried out in Hawaii Ocean Time Series (or HOT) station has analyzed the metagenome of different depths down to 4000m showing the enormous diversity hidden there. This article describes the second study of the bathypelagic region, in this case at a station located over the Ionian abyssal plain, a flat deep basin occupying most of the space between Sicily and Greece in the Eastern Mediterranean. The deep waters of the Mediterranean are special in being free from the intrusion of polar waters that feed most the bottom of the global ocean. The Ionian sample comes from 3000 m deep and is submitted to a continuous pressure of 300 Kg/cm2 but contrastingly to most deep ocean habitats this has a relatively warm temperature of nearly 14C.

In general, a remarkable number of similarities were found with the deep meso-pelagic Pacific and a convergence at the level of taxa found and types of metabolism with the soil microbiota is starting to be perceived. The authors use the term invisible soil paraphrasing the invisible forest coined by Paul Falkowski to refer to the hidden but gigantic primary productivity found in the photic zone. The diversity of metabolic enzymes involved in resilient organic compounds degradation was very high. However, many microbes could complement their heterotrophic metabolism with chemolithotrophic energy supplies and, specifically in the Mediterranean, the oxidation of carbon monoxide, probably released by tectonic activity, could be important. There is also evidence that the microbes rarely live isolated. The free living planktonic lifestyle is probably not very popular in this extremely depleted environment. Quorum sensing genes indicate that instead, microbes tend to aggregate in particles and they could become luminescent maybe to attract and be eaten by animals. This strategy could provide the cells with a sporadic visit to the nutritious oasis of an animal gut. Overall, this paper shows that the deep ocean possesses a rich and mostly unknown microbiota that deserves much more studies.

A recent analysis of a metagenomic library from the deep Mediterranean shows a surprising high number of quorum sensing or lux genes that are only expressed when bacteria live in colonies. The deep ocean might be too depleted in resources for microbes to live independently. Instead the association to detritus particles might give them a rich microenvironment. Now, some of the genes detected have been positively identified as luxA, directly involved in bioluminescence.

Why would deep sea bacteria be luminescent" One possible explanation is that they become attractive to animals that at these depths are very photosensitive. Being swallowed by one of these creatures would give the bacteria a temporary oasis of nutrient-rich conditions before another long dip in the abyssal black.


'/>"/>

Contact: Francisco Rodriguez-Valera
frvalera@umh.es
34-965-919-451
Public Library of Science
Source:Eurekalert

Related biology news :

1. Environmental metagenomics diagnosing extreme environments, tapping opportunities for clean energy
2. Better sludge through metagenomics
3. New science of metagenomics will transform modern microbiology
4. Measuring the impact of post-genomics on Mediterranean populations
5. Phenolic compounds may explain Mediterranean diet benefits
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:4/13/2017)... Calif. , April 13, 2017 UBM,s ... York will feature emerging and evolving technology ... Both Innovation Summits will run alongside the expo portion ... speaker sessions, panels and demonstrations focused on trending topics ... largest advanced design and manufacturing event will take place ...
(Date:4/11/2017)... April 11, 2017 No two people ... at the New York University Tandon School of ... have found that partial similarities between prints are ... in mobile phones and other electronic devices can ... The vulnerability lies in the fact that fingerprint-based ...
(Date:4/5/2017)... -- Today HYPR Corp. , leading innovator in ... the HYPR platform is officially FIDO® Certified . ... that empowers biometric authentication across Fortune 500 enterprises and ... 15 million users across the financial services industry, however ... suites and physical access represent a growing portion of ...
Breaking Biology News(10 mins):
(Date:9/19/2017)... ... 19, 2017 , ... Participants of this educational webinar will ... Along with the advantages and disadvantages of ductless, filtered fume hoods, they will ... laboratory. , Attendees will learn from an industry expert about the different types ...
(Date:9/19/2017)... ... September 19, 2017 , ... The new and improved Oakton® pocket ... testers even stand upright with a new cap design that is versatile, functional and ... field who need to test water quality. , The Oakton pocket testers have many ...
(Date:9/19/2017)... , ... September 19, 2017 , ... ... pleased to announce the recipients of its 2017 Science Student Award. The scholarship ... qualities, and involvement with community service defray the costs of obtaining their science ...
(Date:9/19/2017)... Charlotte, NC (PRWEB) , ... September 19, 2017 ... ... focusing on band technologies for surgical applications, announced today that two new patents ... System. , Michael Albert, MD, Co-Founder of Band-LOK, said, “We continue to explore ...
Breaking Biology Technology: