Navigation Links
Making hydrogenation greener
Date:6/27/2013

Researchers from McGill University, RIKEN (The Institute of Physical and Chemical Research, Wako, Japan) and the Institute for Molecular Science (Okazaki, Japan) have discovered a way to make the widely used chemical process of hydrogenation more environmentally friendly and less expensive.

Hydrogenation is a chemical process used in a wide range of industrial applications, from food products, such as margarine, to petrochemicals and pharmaceuticals. The process typically involves the use of heavy metals, such as palladium or platinum, to catalyze the chemical reaction. While these metals are very efficient catalysts, they are also non-renewable, costly, and subject to sharp price fluctuations on international markets.

Because these metals are also toxic, even in small quantities, they also raise environmental and safety concerns. Pharmaceutical companies, for example, must use expensive purification methods to limit residual levels of these elements in pharmaceutical products. Iron, by contrast, is both naturally abundant and far less toxic than heavy metals.

Previous work by other researchers has shown that iron nanoparticles -- tiny pieces of metallic iron -- can be used to activate the hydrogenation reaction. Iron, however, has a well-known drawback: it rusts in the presence of oxygen or water. When rusted, iron nanoparticles stop acting as hydrogenation catalysts. This problem, which occurs with so much as trace quantities of water, has prevented iron nanoparticles from being used in industry.

In research published today in the journal Green Chemistry, scientists from McGill, RIKEN, and the Institute for Molecular Science report that they have found a way to overcome this limitation, making iron an active catalyst in water-ethanol mixtures containing up to 90% water.

The key to this new method is to produce the particles directly inside a polymer matrix, composed of amphiphilic polymers based on polystyrene and polyethylene glycol. The polymer acts as a wrapping film that protects the iron surface from rusting in the presence of water, while allowing the reactants to reach the water and react.

This innovation enabled the researchers to use iron nanoparticles as catalyst in a flow system, raising the possibility that iron could be used to replace platinum-series metals for hydrogenation under industrial conditions.

"Our research is now focused on achieving a better understanding of how the polymers are protecting the surface of the iron from water, while at the same time allowing the iron to interact with the substrate," says Audrey Moores, an assistant professor of chemistry at McGill and co-corresponding author of the paper.

The results stem from an ongoing collaboration between McGill and RIKEN, one of Japan's largest scientific research organizations, in the fields of nanotechnology and green chemistry. Lead author Reuben Hudson, a doctoral student at McGill, worked on the project at the RIKEN Center for Sustainable Resource Science and at the Institute for Molecular Science in Japan. Co-authors of the paper are Prof. Chao-Jun Li of McGill, Dr. Go Hamasaka and Dr. Takao Osako of the Institute for Molecular Science, Dr. Yoichi M.A. Yamada of Riken and Prof. Yasuhiro Uozumi of Riken and the Institute for Molecular Science.

"The approach we have developed through this collaboration could lead to more sustainable industrial processes," says Prof. Uozumi. "This technique provides a system in which the reaction can happen over and over with the same small amount of a catalytic material, and it enables it to take place in almost pure water -- the green solvent par excellence."


'/>"/>

Contact: Chris Chipello
christopher.chipello@mcgill.ca
514-398-4201
McGill University
Source:Eurekalert

Related biology news :

1. Making memories: How 1 protein does it
2. Killer silk: Making silk fibers that kill anthrax and other microbes in minutes
3. Chemical engineers at UMass Amherst find high-yield method of making xylene from biomass
4. Copper making salmon prone to predators
5. Making healthy food affordable and appealing for low-income populations
6. Winemaking goes high-tech at the University of British Columbia
7. For gay couples, condom decision-making and condom use varies by race
8. Making sense out of the biological matrix of bipolar disorder
9. Making memories: Drexel researchers explore the anatomy of recollection
10. Making chocolate an affordable luxury
11. Are bacteria making you hungry?
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:6/22/2016)... 22, 2016   Acuant , the ... solutions, has partnered with RightCrowd ® ... Visitor Management, Self-Service Kiosks and Continuous Workforce ... add functional enhancements to existing physical access ... venues with an automated ID verification and ...
(Date:6/20/2016)... 20, 2016 Securus Technologies, a leading ... for public safety, investigation, corrections and monitoring announced ... it has secured the final acceptance by all ... Managed Access Systems (MAS) installed. Furthermore, Securus will ... be installed by October, 2016. MAS distinguishes between ...
(Date:6/9/2016)... June 9, 2016  Perkotek an innovation leader in attendance control systems is proud ... work hours, for employers to make sure the right employees are actually signing in, ... ... ... ...
Breaking Biology News(10 mins):
(Date:6/27/2016)... , June 27, 2016 /PRNewswire/ - BIOREM Inc. (TSX-V: BRM) ... advised by its major shareholders, Clean Technology Fund I, ... United States based venture capital funds which ... Biorem (on a fully diluted, as converted basis), that ... of their entire equity holdings in Biorem to TUS ...
(Date:6/27/2016)... ... June 27, 2016 , ... Cancer experts ... they believe could be a new and helpful biomarker for malignant pleural mesothelioma. ... here to read it now. , Biomarkers are components in the blood, ...
(Date:6/27/2016)... ... 2016 , ... Newly created 4Sight Medical Solutions ... healthcare market. The company's primary focus is on new product introductions, to include ... are necessary to help companies efficiently bring their products to market. , The ...
(Date:6/27/2016)... , June 27, 2016  Liquid Biotech ... the funding of a Sponsored Research Agreement with ... tumor cells (CTCs) from cancer patients.  The funding ... CTC levels correlate with clinical outcomes in cancer ... data will then be employed to support the ...
Breaking Biology Technology: