Navigation Links
Making enough red blood cells
Date:6/1/2010

Monterotondo, 31 May 2010 Red blood cells, the delivery men that take oxygen to cells all around the body, have short lives. To keep enough of them in circulation, the human body produces around 2 million of these cells every second even more in response to challenges like severe blood loss. In a study published today in the Journal of Experimental Medicine, scientists at the European Molecular Biology Laboratory (EMBL) in Monterotondo, Italy, and EMBL's European Bioinformatics Institute (EMBL-EBI) in Hinxton, UK, have identified two small RNA molecules which ensure that enough red blood cells are produced efficiently, by fine-tuning a number of different genes involved in this process.

"A lot of the effort of blood cell formation, or haematopoiesis, goes into just keeping enough red blood cells in circulation" says Dnal O'Carroll, who led the work at EMBL Monterotondo: "We've identified two molecules that help to do so, and which are essential in challenging situations."

To form red blood cells, large, round cells known as precursors have to become small and disc-shaped, like balls of plasticine squeezed between finger and thumb. In the process, they must also produce the large quantities of haemoglobin that will allow them to transport oxygen, and shrink and dispose of their nucleus. The EMBL scientists found that two microRNAs, called MiR144 and MiR451, control the final stages of this process.

O'Carroll and colleagues genetically engineered mice to have no MiR144 or MiR451. They found that such mice had defects in the final stages of red blood cell formation, but produced red blood cell precursors not only in the bone marrow, but also in large quantities in the spleen. By increasing the number of precursors, the mice compensated for the fact that a smaller percentage of those precursors matured into functional red blood cells, and thus were able to survive with only a mild anaemia.

"Under steady-state conditions, mice without MiR144 or MiR451 can just about produce enough red blood cells, but if you challenge them, by chemically inducing anaemia, most of them don't survive, because in those conditions you just can't live with inefficient red blood cell formation" O'Carroll explains.

O'Carroll and colleagues teamed up with Anton Enright's group at EMBL-EBI, and used a sophisticated bioinformatics approach to understand how these microRNAs act. They found that of the two, MiR451 probably plays a key role in the process, and that it likely does so not by switching a single gene on or off, but by fine-tuning a multitude of genes involved in red blood cell formation.

These microRNA molecules have been conserved throughout vertebrate evolution. They are known to also be important for red blood cell formation in fish, and are likely to play a similar role in humans too. Thus, investigating their function further could help to understand how our own red blood cells are formed, and how defects in that process may lead to conditions such as anaemia.


'/>"/>

Contact: Sonia Furtado
sonia.furtado@embl.de
European Molecular Biology Laboratory
Source:Eurekalert  

Related biology news :

1. Coal and black liquor can produce energy from papermaking
2. Another type of nanotube, a how-to guide to making bamboo-structured carbon nanotubes
3. GBIF making the search for biodiversity research resources easier
4. Making sense of antisense microRNAs
5. Is that sea otter stealing your lunch -- or making it?
6. LSU scientist finds evidence of rain-making bacteria
7. Making sure the wonder materials dont become the wonder pollutant
8. Findings a step toward making new optical materials
9. Research suggests parts of UK could be too hot for wine-making by 2080
10. Research suggests parts of UK could be too hot for wine making by 2080
11. Small protein may have big role in making more bone and less fat
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
Making enough red blood cells
(Date:4/5/2017)... -- The Allen Institute for Cell Science today announces the ... and dynamic digital window into the human cell. The ... of deep learning to create predictive models of cell ... growing suite of powerful tools. The Allen Cell Explorer ... available resources created and shared by the Allen Institute ...
(Date:3/30/2017)... , March 30, 2017  On April 6-7, 2017, ... the Genome hackathon at Microsoft,s headquarters in ... competition will focus on developing health and wellness apps ... Hack the Genome is the first hackathon ... The world,s largest companies in the genomics, tech and ...
(Date:3/27/2017)... 27, 2017  Catholic Health Services (CHS) has ... Society (HIMSS) Analytics for achieving Stage 6 on ... . In addition, CHS previously earned a place ... an electronic medical record (EMR). "HIMSS ... of EMR usage in an outpatient setting.  This ...
Breaking Biology News(10 mins):
(Date:10/11/2017)... Austin, TX (PRWEB) , ... October 11, 2017 ... ... in August compared the implantation and pregnancy rates in frozen and fresh ... the contribution of progesterone and maternal age to IVF success. , After comparing ...
(Date:10/10/2017)... ... October 10, 2017 , ... San Diego-based team building and ... rebranding initiative announced today. The bold new look is part of a transformation ... moves into a significant growth period. , It will also expand its service offering ...
(Date:10/10/2017)... Philadelphia, PA (PRWEB) , ... October 10, 2017 ... ... University City Science Center’s FirstHand program has won a US2020 STEM Mentoring Award. ... accept the award for Excellence in Volunteer Experience from US2020. , US2020’s mission ...
(Date:10/10/2017)... International research firm Parks Associates announced today that ... TMA 2017 Annual Meeting , October 11 in Scottsdale, ... security market and how smart safety and security products impact the competitive ... Parks Associates: Smart Home Devices: Main ... "The residential security market has experienced continued ...
Breaking Biology Technology: